Real-Time Traffic Sign Decoding with Advanced Sensor Fusion and Deep Learning

Main Article Content

K Samunnisa
Zhou R
Wang B

Abstract

Accurate and real-time traffic sign recognition is crucial for safe navigation and autonomous driving. However, traditional camera-based systems struggle with varying lighting, occlusions, and adverse weather. This research addresses this by proposing a novel approach for real-time traffic sign decoding that leverages advanced sensor fusion and deep learning. The framework integrates data from cameras, LiDAR (3D environment information), and potentially radar (effective in low-light) to create a robust representation. This richer data is then processed by a deep learning model specifically designed for traffic sign recognition. We evaluate the framework on real-world datasets captured in diverse driving environments. Performance metrics focus on real-time accuracy of traffic sign decoding. The results demonstrate that the proposed approach achieves high accuracy, significantly enhancing the reliability and robustness of traffic sign recognition systems. This research, applicable to various autonomous driving and navigation applications, paves the way for safer and more efficient on-road experiences.

Article Details

How to Cite
[1]
K Samunnisa, Zhou R, and Wang B, “Real-Time Traffic Sign Decoding with Advanced Sensor Fusion and Deep Learning”, Int. J. Comput. Eng. Res. Trends, vol. 11, no. 3, pp. 20–28, Mar. 2024.
Section
Research Articles

References

Tan, M., Pang, R., & Le, Q. V. (2020). EfficientDet: Scalable and Efficient Object Detection. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 10781-10790. https://doi.org/10.1109/CVPR42600.2020.01080

Redmon, J., & Farhadi, A. (2018). YOLOv3: An Incremental Improvement. arXiv preprint arXiv:1804.02767.

Lin, T. Y., Goyal, P., Girshick, R., He, K., & Dollár, P. (2017). Focal Loss for Dense Object Detection. Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2980-2988. https://doi.org/10.1109/ICCV.2017.324

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., & Berg, A. C. (2016). SSD: Single Shot MultiBox Detector. Proceedings of the European Conference on Computer Vision (ECCV), 21-37. https://doi.org/10.1007/978-3-319-46448-0_2

Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. Advances in Neural Information Processing Systems (NIPS), 28, 91-99.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep Residual Learning for Image Recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770-778. https://doi.org/10.1109/CVPR.2016.90

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., ... & Adam, H. (2017). MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv preprint arXiv:1704.04861.

Bochkovskiy, A., Wang, C. Y., & Liao, H. Y. M. (2020). YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv preprint arXiv:2004.10934.

Simonyan, K., & Zisserman, A. (2015). Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv preprint arXiv:1409.1556.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., ... & Rabinovich, A. (2015). Going Deeper with Convolutions. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1-9. https://doi.org/10.1109/CVPR.2015.7298594

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., ... & Fei-Fei, L. (2015). ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision, 115(3), 211-252. https://doi.org/10.1007/s11263-015-0816-y

Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 580-587. https://doi.org/10.1109/CVPR.2014.81

Zeiler, M. D., & Fergus, R. (2014). Visualizing and Understanding Convolutional Networks. Proceedings of the European Conference on Computer Vision (ECCV), 818-833. https://doi.org/10.1007/978-3-319-10590-1_53

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet Classification with Deep Convolutional Neural Networks. Advances in Neural Information Processing Systems (NIPS), 25, 1097-1105.

Everingham, M., Eslami, S. M. A., Van Gool, L., Williams, C. K. I., Winn, J., & Zisserman, A. (2015). The Pascal Visual Object Classes Challenge: A Retrospective. International Journal of Computer Vision, 111(1), 98-136. https://doi.org/10.1007/s11263-014-0733-5

Wu, Y., Kirillov, A., Massa, F., Lo, W. Y., & Girshick, R. (2019). Detectron2. https://github.com/facebookresearch/detectron2

Zheng, Z., Wang, P., Liu, W., Li, J., Ye, R., & Ren, D. (2020). Distance-IoU Loss: Faster and Better Learning for Bounding Box Regression. Proceedings of the AAAI Conference on Artificial Intelligence, 34(7), 12993-13000. https://doi.org/10.1609/aaai.v34i07.7007

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., ... & Guo, B. (2021). Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 10012-10022. https://doi.org/10.1109/ICCV48922.2021.00989

Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., & Zagoruyko, S. (2020). End-to-End Object Detection with Transformers. Proceedings of the European Conference on Computer Vision (ECCV), 213-229. https://doi.org/10.1007/978-3-030-58452-8_13

Bochkovskiy, A., Wang, C. Y., & Liao, H. Y. M. (2020). YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv preprint arXiv:2004.10934.