Impact Factor:6.549
Scopus Suggested Journal: |
International Journal
of Computer Engineering in Research Trends (IJCERT)
Scholarly, Peer-Reviewed, Open Access and Multidisciplinary
International Journal of Computer Engineering in Research Trends. Scholarly, Peer-Reviewed,Open Access and Multidisciplinary
ISSN(Online):2349-7084 Submit Paper Check Paper Status Conference Proposal
[1] Korbmacher, R., & Tordeux, A. : Review of Pedestrian Trajectory Prediction Methods: Comparing Deep Learning and Knowledge-based Approaches. ArXiv, abs /(2022). 2111.06740. [2] Yi, S., Li, H., Wang, X.: Understanding pedestrian behaviors from stationary crowd groups. In: Proceedings of CVPR (2019) [3] Yi, S., Li, H., Wang, X.: Pedestrian behavior modeling from stationary crowds with applications to intelligent surveillance. TIP 25(9), 4354–4368 (2016). [4] Tang, S., Andriluka, M., Milan, A., Schindler, K., Roth, S., Schiele, B.: Learning people detectors for tracking in crowded scenes. In: Proceedings of ICCV (2016) [5] Leal-Taix´e, L., Fenzi, M., Kuznetsova, A., Rosenhahn, B., Savarese, S.: Learning an image-based motion context for multiple people tracking. In: Proceedings of CVPR (2017) [6]Zhou, B., Wang, X., Tang, X.: Understanding collective crowd behaviors: learning a mixture model of dynamic pedestrian-agents. In: Proceedings of CVPR (2019) [7] Chang, M.C., Krahnstoever, N., Ge, W.: Probabilistic group-level motion analysis and scenario recognition. In: Proceedings of ICCV (2018). [8] Mehran, R., Oyama, A., Shah, M.: Abnormal crowd behavior detection using social force model. In: Proceedings of CVPR (2017) [9] Mahadevan, V., Li, W., Bhalodia, V., Vasconcelos, N.: Anomaly detection in crowded scenes. In: Proceedings of CVPR (2010) [10] Yi, S., Wang, X., Lu, C., Jia, J., Li, H.: L0 regularized stationary-time estimation for crowd analysis. TPAMI PP(99), 1 (2016). [11] Pellegrini, S., Ess, A., Schindler, K., Van Gool, L.: You’ll never walk alone: modeling social behavior for multi-target tracking. In: Proceedings of ICCV (2019) [12] Xiaoge Zhang, Sankaran Mahadevan, Bayesian neural networks for flight trajectory prediction and safety assessment, Decision Support Systems, Volume 131,2020,113246, ISSN 0167-9236. [13] S. Lefèvre, C. Laugier and J. Ibañez-Guzmán, "Exploiting map information for driver intention estimation at road intersections," 2011 IEEE Intelligent Vehicles Symposium (IV), Baden-Baden, 2011, pp. 583-588, doi: 10.1109/IVS.2011.5940452. [14] S. Danielsson, L. Petersson and A. Eidehall, "Monte Carlo based Threat Assessment: Analysis and Improvements," 2007 IEEE Intelligent Vehicles Symposium, Istanbul, 2007, pp. 233-238, doi: 10.1109/IVS.2007.4290120. [15] Q. Tran and J. Firl, "A probabilistic discriminative approach for situation recognition in traffic scenarios," 2012 IEEE Intelligent Vehicles Symposium, Alcala de Henares, 2012, pp. 147-152, doi: 10.1109/IVS.2012.6232279. [16] C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006, ISBN 026218253X. [17] Wenjie Luo, Bin Yang, and Raquel Urtasun. Fast and furious: Real time end-to-end 3d detection, tracking and motion forecasting with a single convolutional net. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pages 3569–3577, 2018. [18] Amir Sadeghian, Vineet Kosaraju, Ali Sadeghian, Noriaki Hirose, Hamid Rezatofighi, and Silvio Savarese. Sophie: An attentive gan for predicting paths compliant to social and physical constraints. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1349– 1358, 2019. [19] Nachiket Deo and Mohan M Trivedi. Convolutional social pooling for vehicle trajectory prediction. arXiv preprint arXiv:1805.06771, 2018. [20] Rohan Chandra, Uttaran Bhattacharya, Aniket Bera, and Dinesh Manocha. Traphic: Trajectory prediction in dense and heterogeneous traffic using weighted interactions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 8483–8492, 2019 [21] Rohan Chandra, Uttaran Bhattacharya, Christian Roncal, Aniket Bera, and Dinesh Manocha. Robusttp: End-toend trajectory prediction for heterogeneous road-agents in dense traffic with noisy sensor inputs. arXiv preprint arXiv:1907.08752, 2019. [22] Yuexin Ma, Xinge Zhu, Sibo Zhang, Ruigang Yang, Wenping Wang, and Dinesh Manocha. Trafficpredict: Trajectory prediction for heterogeneous traffic-agents. arXiv preprint arXiv:1811.02146, 2018. [23] N. Djuric, V. Radosavljevic, H. Cui, T. Nguyen, F.-C. Chou, T.-H. Lin, and J. Schneider. Short-term Motion Prediction of Traffic Actors for Autonomous Driving using Deep Convolutional Networks. ArXiv e-prints, Aug. 2018. [24] Shengnan Guo, Youfang Lin, Ning Feng, Chao Song, and Huaiyu Wan. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages 922–929, 2019. [25] Zhiyong Cui, Kristian Henrickson, Ruimin Ke, and Yinhai Wang. Traffic graph convolutional recurrent neural network: A deep learning framework for network-scale traffic learning and forecasting. arXiv preprint arXiv:1802.07007, 2018. [26] Kooij, Julian & Schneider, Nicolas & Flohr, Fabian & Gavrila, Dariu. (2014). Context-Based Pedestrian Path Prediction. 10.1007/978-3-319-10599-4_40. [27] S. K. Jayaraman, C. Creech, L. P. Robert Jr., D. M. Tilbury, X. J. Yang, A. K. Pradhan, and K. M. Tsui, “Trust in AV: An Uncertainty Reduction Model of AV-Pedestrian Interactions,” in Companion 2018 ACM/IEEE Int. Conf. Human-Robot Interaction, 2018, pp. 133–134. [28] L. Robert, “The future of pedestrian–automated vehicle interactions,” XRDS: Crossroads, ACM, vol. 25, no. 3, 2019. [29] K. Saleh, M. Hossny, and S. Nahavandi, “Towards trusted autonomous vehicles from vulnerable road users perspective,” in 2017 11th Annu. IEEE Int. Syst. Conf., SysCon, 2017, pp. 1–7. [30] A. Gorrini, G. Vizzari, and S. Bandini, “Towards Modelling Pedestrian-Vehicle Interactions: Empirical Study on Urban Unsignalized Intersection,” arXiv preprint arXiv:1610.07892, 2016. [31] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and S. Savarese, “Social LSTM: Human Trajectory Prediction in Crowded Spaces,” in Proc. IEEE Conf. Comput. Vision Pattern Recognition, 2016, pp. 961–971. [32] Yi, S., Li, H., & Wang, X. (2016). Pedestrian Behavior Understanding and Prediction with Deep Neural Networks. Lecture Notes in Computer Science, 263–279. [33] Basharat, A., Gritai, A., Shah, M.: Learning object motion patterns for anomaly detection and improved object detection. In: Proceedings of CVPR (2008) [34] Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of CVPR (2015) [35] Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recognition in videos. In: Proceedings of NIPS (2014) [36] Shao, J., Kang, K., Loy, C.C., Wang, X.: Deeply learned attributes for crowded scene understanding. In: Proceedings of CVPR (2015) [37]. Ji, S., Xu, W., Yang, M., Yu, K.: 3D convolutional neural networks for human action recognition. TPAMI 35(1), 221–231 (2013)
![]() | V9I1205.pdf |
Latest issue :Volume 10 Issue 1 Articles In press
☞ INVITING SUBMISSIONS FOR THE NEXT ISSUE : |
---|
☞ LAST DATE OF SUBMISSION : 31st March 2023 |
---|
☞ SUBMISSION TO FIRST DECISION : In 7 Days |
---|
☞ FINAL DECISION : IN 3 WEEKS FROM THE DAY OF SUBMISSION |
---|