Impact Factor:6.549
Scopus Suggested Journal: |
International Journal
of Computer Engineering in Research Trends (IJCERT)
Scholarly, Peer-Reviewed, Open Access and Multidisciplinary
International Journal of Computer Engineering in Research Trends. Scholarly, Peer-Reviewed,Open Access and Multidisciplinary
ISSN(Online):2349-7084 Submit Paper Check Paper Status Conference Proposal
[1]. Pellicer, B., et al. "Ultrasound bioeffects in rats: quantification of cellular damage in the fetal liver after pulsed Doppler imaging." Ultrasound in obstetrics & gynecology 37.6 (2011): 643-648. [2]. Dhas, Edwin, and M. Suchetha. "Extraction of Fetal ECG From Abdominal and Thorax ECG Using a Non-Causal Adaptive Filter Architecture." IEEE Transactions on Biomedical Circuits and Systems (2022). [3]. Esteva, A. et al. Dermatologist-level classification of skin cancer with deep neural networks. Nat. 542, 115 (2017). [4]. Sobhaninia, Zahra, et al. "Fetal ultrasound image segmentation for measuring biometric parameters using multi-task deep learning." 2019 41st annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE, 2019. [5]. Hosny, A., Parmar, C., Quackenbush, J., Schwartz, L. H. &Aerts, H. J. Artificial intelligence in radiology. Nat. Rev. Cancer 18, 500 (2018). [6]. Litjens, G. et al. A survey on deep learning in medical image analysis. Med. image analysis 42, 60–88 (2017). [7]. Das, Sraddha, et al. "Deep learning architecture based on segmented fundus image features for classification of diabetic retinopathy." Biomedical Signal Processing and Control 68 (2021): 102600. [8]. Guo, Z., Zhang, L. and Zhang, D., 2010. A completed modeling of local binary pattern operator for texture classification. IEEE transactions on image processing, 19(6), pp.1657-1663. [9]. Jabid, Taskeed, Md Hasanul Kabir, and Oksam Chae. "Local directional pattern (LDP)–A robust image descriptor for object recognition." 2010 7th IEEE international conference on advanced video and signal based surveillance. IEEE, 2010. [10]. Dalal, Navneet, and Bill Triggs. "Histograms of oriented gradients for human detection." 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR'05). Vol. 1. Ieee, 2005. [11]. Ryou, H. et al. Automated 3d ultrasound biometry planes extraction for first trimester fetal assessment. In Machine Learning in Medical Imaging, 196–204 (2016). [12] Li, Y. et al. Standard plane detection in 3d fetal ultrasound using an iterative transformation network. Medical Image Computing and Computer Assisted Intervention – MICCAI 2018, 392–400 (2018). [13]. Maraci, M., Bridge, C., Napolitano, R., Papageorghiou, A. & Noble, J. A framework for analysis of linear ultrasound videos to detect fetal presentation and heartbeat. Med. Image Analysis 37, 22–36 (2017). [14] Sushma, T. V., et al. "Classification of Fetal Heart Ultrasound Images for the Detection of CHD." Innovative Data Communication Technologies and Application. Springer, Singapore, 2021. 489-505. [15] Qiao, Sibo, et al. "RLDS: An explainable residual learning diagnosis system for fetal congenital heart disease." Future Generation Computer Systems 128 (2022): 205-218. [16] Xie, H. N., et al. "Using deep?learning algorithms to classify fetal brain ultrasound images as normal or abnormal." Ultrasound in Obstetrics &Gynecology 56.4 (2020): 579-587. [17]. Lee, Lok Hin, Yuan Gao, and J. Alison Noble. "Principled Ultrasound Data Augmentation for Classification of Standard Planes." International Conference on Information Processing in Medical Imaging. Springer, Cham, 2021. [18]. Attallah, Omneya, Maha A. Sharkas, and Heba Gadelkarim. "Fetal brain abnormality classification from MRI images of different gestational age." Brain sciences 9.9 (2019): 231. [19]. Kumari, S. Sandhya, and K. Sandhya Rani. "Empirical mode Decomposition and Dual Sigmoid Activation Function-Based Faster RCNN for Big Data Doppler Scan Image Classification." measurement 8.9 (2021): 151-165. [20]. Suchetha, M., et al. "Region of interest-based predictive algorithm for subretinal hemorrhage detection using faster R-CNN." Soft Computing 25.24 (2021): 15255-15268. [21]. Donoser, Michael, and Horst Bischof. "Efficient maximally stable extremal region (MSER) tracking." 2006 IEEE computer society conference on computer vision and pattern recognition (CVPR'06). Vol. 1. Ieee, 2006. [22]. Bay, Herbert, et al. "Speeded-up robust features (SURF)." Computer vision and image understanding 110.3 (2008): 346-359. [23]. Prabha, K., and I. Shatheesh Sam. "A novel blind color image watermarking based on Walsh Hadamard Transform." Multimedia Tools and Applications 79.9 (2020): 6845-6869. [24]. Jiang, Huaizu, and Erik Learned-Miller. "Face detection with the faster R-CNN." 2017 12th IEEE international conference on automatic face & gesture recognition (FG 2017). IEEE, 2017. [25]. Burgos-Artizzu, Xavier P., et al. "Evaluation of deep convolutional neural networks for automatic classification of common maternal fetal ultrasound planes." Scientific Reports 10.1 (2020): 1-12. [26]. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A. & Chen, L.-C. Mobilenetv2: Inverted residuals and linear bottlenecks. CVPR(2018). [27]. Simonyan, K. & Zisserman, A. Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556 (2014). [28]. Hu, J., Shen, L. & Sun, G. Squeeze-and-excitation networks. CoRR abs/1709.01507 (2017). [29]. He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. CoRR abs/1512.03385 (2015). [30]. Szegedy, C. et al. Going deeper with convolutions. CoRR abs/1409.4842 (2014). [31]. Burgos-Artizzu, Xavier P., et al. "Evaluation of deep convolutional neural networks for automatic classification of common maternal fetal ultrasound planes." Scientific Reports 10.1 (2020): 1-12. [32]. Xie, S., Girshick, R., Dollar, P., Tu, Z. & He, K. Aggregated residual transformations for deep neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1492–1500 (2017).
![]() | V9I1001.pdf |
Latest issue :Volume 10 Issue 1 Articles In press
☞ INVITING SUBMISSIONS FOR THE NEXT ISSUE : |
---|
☞ LAST DATE OF SUBMISSION : 31st March 2023 |
---|
☞ SUBMISSION TO FIRST DECISION : In 7 Days |
---|
☞ FINAL DECISION : IN 3 WEEKS FROM THE DAY OF SUBMISSION |
---|