Impact Factor:6.549
Scopus Suggested Journal: |
International Journal
of Computer Engineering in Research Trends (IJCERT)
Scholarly, Peer-Reviewed, Open Access and Multidisciplinary
International Journal of Computer Engineering in Research Trends. Scholarly, Peer-Reviewed,Open Access and Multidisciplinary
ISSN(Online):2349-7084 Submit Paper Check Paper Status Conference Proposal
[1] S. Parnerkar, A. V. Jain, and C. Birchha, ‘‘An approach to efficient software bug prediction using regression analysis and neural networks,’’ Int. J. Innov. Res. Computer. Commun. Eng., vol. 3, no. 10, Oct. 2015. [2] A. V. Phan, M. L. Nguyen, and L. T. Bui, ‘‘Convolutional neural networks over control flow graphs for software defect prediction,’’ in Proc. IEEE 29th Int. Conf. Tools Artif. Intell. (ICTAI), Nov. 2017, pp. 45–52. [3] E. Erturk and E. A. Sezer, ‘‘Iterative software fault prediction with a hybrid approach,’’ Appl. Soft Comput., vol. 49, pp. 1020–1033, Dec. 2016. [4] R. Kumar and D. Gupta, ‘‘Software Bug Prediction System Using Neural Network,’’ Eur. J. Adv. Eng. Technol., vol. 3, no. 7, pp. 78–84, 2016. [5] I. B. Y. Goodfellow and A. Courville, Deep Learning, 1st ed. Cambridge, U.K.: MIT Press, 2016. [6] S. Haykin, Networks and Learning Machines. London, U.K.: Pearson, 2009. [7] Y.-S. Su and C.-Y. Huang, ‘‘Neural-network-based approaches for software reliability estimation using dynamic weighted combinational models,’’ J. Syst. Softw., vol. 80, no. 4, pp. 606–615, Apr. 2007. [8] A. Pahal and R. S. Chillar, ‘‘A hybrid approach for software fault prediction using artificial neural network and simplified swarm optimization,’’ IJARCCE, vol. 6, no. 3, pp. 601–605, Mar. 2017. [9] Y. LeCun and Y. H. Bengio And Hinton, ‘‘Deep learning,’’ Nature, vol. 521, no. 7553, pp. 436-444, 2015. [10] S. Yang, L. Chen, T. Yan, Y. Zhao, and Y. Fan, ‘‘An ensemble classification algorithm for convolutional neural network based on AdaBoost,’’ in Proc. IEEE/ACIS 16th Int. Conf. Comput. Inf. Sci., May 2017, pp. 401–406. [11] C. Farabet, B. Martini, P. Akselrod, S. Talay, Y. LeCun, and E. Culurciello, ‘‘Hardware accelerated convolutional neural networks for synthetic vision systems,’’ in Proc. IEEE Int. Symp. Circuits Syst., May 2010, pp. pp. 257–260. [12] C. W. S. Jin Jin and M. J. Ye, ‘‘Artificial neural network-based metric selection for software fault-prone prediction model,’’ IET Software, vol. 6, no. 6, pp. 479–487, Dec. 2012. [13] C. Zhang, P. Patras, and H. Haddadi, ‘‘Deep learning in mobile and wireless networking: A survey,’’ IEEE Commun. Surveys Tuts., vol. 21, no. 3, pp. 2224–2287, 3rd Quart., 2019. [14] D. Kaur, A. Kaur, S. Gulati, and M. Aggarwal, ‘‘A clustering algorithm for software fault prediction,’’ in Proc. Int. Conf. Comput. Commun. Technol. (ICCCT), Sep. 2010, pp. 603–607. [15] M. Park and H. Hong, ‘‘Software fault prediction model using clustering algorithms determining the number of clusters automatically,’’ Int. J. Softw. Eng. Appl., vol. 8, no. 7, pp. 199–204, 2014. [16] R. S. Wahono and N. S. Herman, ‘‘Genetic feature selection for software defect prediction,’’ Adv. Sci. Lett., vol. 20, no. 1, pp. 239–244, Jan. 2014. [17] H. Wang, T. M. Khoshgoftaar, J. Van Hulse, and K. Gao, ‘‘Metric selection for software defect prediction,’’ Int. J. Softw. Eng. Knowl. Eng., vol. 21, no. 02, pp. 237–257, Mar. 2011. [18] J. Li, P. He, J. Zhu, and M. R. Lyu, ‘‘Software defect prediction via convolutional neural network,’’ in Proc. IEEE Int. Conf. Softw. Qual., Rel. Secur. (QRS), Jul. 2017, pp. 318–328. [19] H. Khanh Dam, T. Pham, S. Wee Ng, T. Tran, J. Grundy, A. Ghose, T. Kim, and C.-J. Kim, ‘‘A deep tree-based model for software defect prediction,’’ 2018, arXiv:1802.00921. [Online]. Available: http://arxiv.org/abs/1802.00921 [20] S. D. Chandra, ‘‘Software defect prediction based on classification rule mining,’’ Dept. Comput. Sci. Eng., Nat. Inst. Technol. Rourkela, Rourkela, India, Tech. Rep., 2013.
![]() | V9I901.pdf |
Latest issue :Volume 10 Issue 1 Articles In press
☞ INVITING SUBMISSIONS FOR THE NEXT ISSUE : |
---|
☞ LAST DATE OF SUBMISSION : 31st March 2023 |
---|
☞ SUBMISSION TO FIRST DECISION : In 7 Days |
---|
☞ FINAL DECISION : IN 3 WEEKS FROM THE DAY OF SUBMISSION |
---|