Impact Factor:6.549
Scopus Suggested Journal: |
International Journal
of Computer Engineering in Research Trends (IJCERT)
Scholarly, Peer-Reviewed, Open Access and Multidisciplinary
International Journal of Computer Engineering in Research Trends. Scholarly, Peer-Reviewed,Open Access and Multidisciplinary
ISSN(Online):2349-7084 Submit Paper Check Paper Status Conference Proposal
[1] Chen, M., Mao, S., & Liu, Y, “Big data: A survey”, Mobile Networks and Applications Springer, volume 19, issue 2, April2014, pp. 171-209. [2] Sagiroglu, S., & Sinanc, D, “Big data: A review”, IEEE International Conference on Collaboration Technologies and Systems (CTS), 2013, pp 42-47. [3] Pal, A., & Agrawal, S “An experimental approach towards big data for analyzing memory utilization on a Hadoop cluster using HDFS and MapReduce”, IEEE, First International Conference on Networks & Soft Computing (ICNSC), August 2014, pp.442-447. [4] Zhang, J., & Huang, M. L., “5Ws model for bigdata analysis and visualization,” IEEE 16th International Conference on Computational Science and Engineering, 2013, pp.1021-1028. [5] Qureshi, S. R., & Gupta, A, “Towards efficient Big Data and data analytics: A review”, IEEE International Conference on IT in Business, Industry and Government (CSIBIG),March 2014 pp-1-6. [6] Aravinth, M. S., Shanmugapriyaa, M. S., Sowmya, M. S., & Arun, “An Efficient HADOOP Frameworks SQOOP and Ambari for Big Data Processing,” International Journal for Innovative Research in Science and Technology, 2015, pp. 252-255. [7] Cloudera- http://www.cloudera.com [8] http://www.zetta.net/blog/cloud-storage-explained-yahoo [9] Tang, Z., Jiang, L., Zhou, J., Li, K., & Li, K, “A self-adaptive scheduling algorithm for reduce start time” Future Generation Computer Systems, Elsevier, 2015, pp:51-60. [10] Zheng, Z., Zhu, J., & Lyu, M. R, “ervice-generated big data and big data-as-a-service: an overview,” IEEE International Congress on Big Data (BigData Congress), 2013, pp: 403-410. [11] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google file system,” in ACM SIGOPS Operating System Review. Bolton Landing, New York, USA, 2003, pp. 29–43. [12] J. Dean and S. Ghemawat, “MapReduce: A flexible data processing tool,” Commun. ACM, vol. 53, pp. 72–77, 2010. [13] A. Toshniwal et al., “Storm@twitter,” presented at the Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data, Snowbird, UT, USA, 2014. [14] B. Saha, H. Shah, S. Seth, G. Vijayaraghavan, A. Murthy, and C. Curino, “Apache Tez: A unifying framework for modeling and building data processing applications,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2015, pp. 1357–1369. [15] K. Wang et al., “Overcoming hadoop scaling limitations through distributed task execution,” in Proc. IEEE Int. Conf. Cluster Comput. (CLUSTER’15), 2015, pp. 236–245. [16] H. Karau, A. Konwinski, P. Wendell, and M. Zaharia, Learning Spark:Lightning-Fast Big Data Analysis. Sebastopol, CA, USA: O’Reilly Media, Inc, 2015. [17] E. Vermote, S. Kotchenova, and J. Ray, “MODIS surface reflectance user’s guide version 1.3,” in MODIS Land Surface Reflectance Science Computing Facility, 2011 [Online]. Available: http://www.modissr.ltdri.org/. [18] Z. Wan, “MODIS land surface temperature products users’ guide,” Inst. Comput. Earth Syst. Sci., Univ. California, Santa Barbara, CA, USA, 2006 [Online]. Available: http://www.icess. ucsb.edu/modis/LstUsrGuide/usrguide. html. [19] Y. Qu, Q. Liu, S. Liang, L. Wang, N. Liu, and S. Liu, “Direct-estimation algorithm for mapping daily land-surface broadband albedo from MODIS data,” IEEE Trans. Geosci. Remote Sens., vol. 52, no. 2, pp. 907–919, Feb.2014. [20] Sitthapon Pumpichet, Niki Pissinou, Xinyu Jin and Deng Pan, "Belief-based Cleaning in Trajectory Sensor Streams", IEEE ICCC 2012, Adhoc and Sensor Networking Symposium Pages: 208 - 212, 2012. [21] [Available online: 14110/2014, 2312] https:llearth.esa.inti [22] [Available online: 1511012014, 0333] http://www.brockmann-consult.de/cms/web/beam/ [23] Olson, Mike. "Hadoop: Scalable, flexible data storage and analysis." IQT Quarterly 1.3 (2010): 14-18. [24] Castro P S, Zhang D, Li S. Urban traffic modelling and prediction using large scale taxi GPS traces[M]//Springer, 2012:57-72. [25] J. D, S. G. MapReduce: simplified data processing on large clusters: Operating Systems Design and Implementation, 2004[C]. [26] Liu L, Andris C, Ratti C. Uncovering cabdrivers’ behavior patterns from their digital traces[J]. Computers, Environment and Urban Systems, 2010,34(6):541-548. [27] Liu Y, Liu X, Gao S et al. Social sensing: a new approach to understanding our socioeconomic environments[J]. Annals of the Association of American Geographers, 2015,105(3):512-530. [28] Simoes J, Gimènez R, Planagumà M. Big Data y Bases de Datos Espaciales: una análisis comparativo[J]. 2015. [29] Wang Y, Liu Z, Liao H et al. Improving the performance of GIS polygon overlay computation with MapReduce for spatial big data processing[J]. Cluster Computing, 2015,18(2):507-516.
![]() | V6I901.pdf |
Latest issue :Volume 10 Issue 1 Articles In press
☞ INVITING SUBMISSIONS FOR THE NEXT ISSUE : |
---|
☞ LAST DATE OF SUBMISSION : 31st March 2023 |
---|
☞ SUBMISSION TO FIRST DECISION : In 7 Days |
---|
☞ FINAL DECISION : IN 3 WEEKS FROM THE DAY OF SUBMISSION |
---|