Impact Factor:6.549
Scopus Suggested Journal: |
International Journal
of Computer Engineering in Research Trends (IJCERT)
Scholarly, Peer-Reviewed, Open Access and Multidisciplinary
International Journal of Computer Engineering in Research Trends. Scholarly, Peer-Reviewed,Open Access and Multidisciplinary
ISSN(Online):2349-7084 Submit Paper Check Paper Status Conference Proposal
[1] Y. Zhang and J. M. Jordan, "Epidemiology of osteoarthritis", Clinics Geriatric Med., vol. 26, no. 3, pp. 355, 2010. [2] K. D. Brandt, M. Doherty and L. S. Lohmander, Osteoarthritis, Oxford, U.K.:Oxford Univ. Press, pp. 598, 2003. [3] The burden of musculoskeletal diseases in the United States, Rosemont, IL, USA, 2008. [4] C. R. Chu, A. A. Williams, C. H. Coyle and M. E. Bowers, "Early diagnosis to enable early treatment of pre-osteoarthritis", Arthritis Res. Therapy, vol. 14, no. 3, pp. 212, 2012. [5] D. Bhatia, T. Bejarano and M. Novo, "Current interventions in the management of knee osteoarthritis", J. Pharmacy Bioallied Sci., vol. 5, no. 1, pp. 30-38, 2013. [6] H. Shim, S. Chang, C. Tao, J. H. Wang, C. K. Kwoh and K. T. Bae, "Knee cartilage: Efficient and reproducible segmentation on high-spatial-resolution MR images with the semiautomated graph-cut algorithm method", Radiology, vol. 251, no. 2, pp. 548-565, 2009. [7] J. L. Jaremko, R. W. T. Cheng, R. G. W. Lambert, A. F. Habib and J. L. Ronsky,"Reliability of an efficient MRI-based method for estimation of knee cartilage volume using surface registration", Osteoarthritis Cartilage, vol. 14, no. 9, pp. 914-922, 2006. [8] Y. Yin, X. Zhang, R. Williams, X. Wu, D. Anderson and M. Sonka, "LOGISMOS—Layered optimal graph image segmentation of multiple objects and surfaces: Cartilage segmentation in the knee Joint", IEEE Trans. Med. Imag., vol. 29, no. 12, pp. 2023-2037, Dec. 2010. [9] Abedin, J. et al. (2019) “Predicting knee osteoarthritis severity: comparative modeling based on patient’s data and plain X-ray images,” Scientific reports, 9(1), p. 5761. [10] Alexos, A. et al. (2020) “Prediction of pain in knee osteoarthritis patients using machine learning: Data from Osteoarthritis Initiative,” in 2020 11th International Conference on Information, Intelligence, Systems and Applications (IISA. IEEE, pp. 1–7). [11] Bandyopadhyay, S. and Sharma, P. (2016) “Detection of Osteoarthritis using Knee X-Ray Image Analyses: A Machine Vision based Approach.” Available at: https://www.semanticscholar.org/paper/b5c55c6c40c389cb203bb654c78b2a3a306ffe4e (Accessed: August 4, 2021). [12] Bany Muhammad, M. et al. (2019) “Deep ensemble network for quantification and severity assessment of knee osteoarthritis,” in 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA). IEEE, pp. 951–957. [13] Chen, P. et al. (2019) “Fully automatic knee osteoarthritis severity grading using deep neural networks with a novel ordinal loss,” Computerized medical imaging and graphics: the official journal of the Computerized Medical Imaging Society, 75, pp. 84–92. [14] Chen, T. and Guestrin, C. (2016) “XGBoost: A Scalable Tree Boosting System,” arXiv [cs.LG]. Available at: http://arxiv.org/abs/1603.02754 (Accessed: August 10, 2021). [15] IEEE. Kwon, S. B. et al. (2020) “Machine learning-based automatic classification of knee osteoarthritis severity using gait data and radiographic images”, IEEE access: practical innovations, open solutions, 8, pp. 120597–120603. [16] " Knee Osteoarthritis pain prediction from X-ray imaging: Data from Osteoarthritis Initiative" Jorge I. Galván-Tejada, Víctor Treviño, José M. Celaya-Padilla, José G. Tamez-Peña.
![]() | V81205.pdf |
Latest issue :Volume 10 Issue 1 Articles In press
☞ INVITING SUBMISSIONS FOR THE NEXT ISSUE : |
---|
☞ LAST DATE OF SUBMISSION : 31st March 2023 |
---|
☞ SUBMISSION TO FIRST DECISION : In 7 Days |
---|
☞ FINAL DECISION : IN 3 WEEKS FROM THE DAY OF SUBMISSION |
---|