Impact Factor:6.549
 Scopus Suggested Journal: UNDER REVIEW for TITLE INCLUSSION

International Journal
of Computer Engineering in Research Trends (IJCERT)

Scholarly, Peer-Reviewed, Open Access and Multidisciplinary

Welcome to IJCERT

International Journal of Computer Engineering in Research Trends. Scholarly, Peer-Reviewed,Open Access and Multidisciplinary

ISSN(Online):2349-7084                 Submit Paper    Check Paper Status    Conference Proposal

Back to Current Issues

Prediction of Knee Osteoarthritis Using Deep Learning

Mr.P. SIVA, , , ,
Department of Computer Science and Engineering, Matrusri Engineering College, Hyderabad, Telangana, India.

Knee osteoarthritis (OA) is a disease that increases in incidence and prevalence with advancing age, resulting in symptomatic knee OA in those over the age of 60, around 10 per cent of men and 13 per cent of women. Knee osteoarthritis (OA) is a chronic degenerative joint disease characterized by cartilage loss and changes in bones underneath it, causing pain and functional disability. The main clinical symptoms of knee. OA are pain and stiffness, particularly after activity, leading to reduced mobility and quality of life, and eventually resulting in knee replacement surgery. OA is one of the leading causes of global disability in people aged 65 and older, and its burden is likely to increase in the future with the ageing of the population and rise in obesity worldwide. OA is mainly diagnosed in clinical studies by means of medical images. X-ray imaging creates pictures of the inside of your body. The images show the parts of your body in different shades of black and white. This is because different tissues absorb different amounts of radiation. Calcium in bones absorbs x-rays the most, so bones look white. The typical symptoms of KOA include pain, stiffness, decreased joint range of motion, and gait dysfunctions, which worsen in accordance with an increase in the disease progression. OA is mainly diagnosed through medical images. It can be predicted using x-ray or mri images. The primary goal of this project was to develop an automated classification model fr Knee Osteoarthritis, based on the Kellgren-Lawrence(KL) grading system, using radiographic imaging and obtain satisfactory results for further diagnosis.

Mr.P. SIVA."Prediction of Knee Osteoarthritis Using Deep Learning". International Journal of Computer Engineering In Research Trends (IJCERT) ,ISSN:2349-7084 ,Vol.8, Issue 12,pp.228-235, December - 2021, URL :,

Keywords : Knee osteoarthritis, MRI, KOA, Progression.

[1]	Y. Zhang and J. M. Jordan, "Epidemiology of osteoarthritis", Clinics Geriatric Med., vol. 26, no. 3, pp. 355, 2010. 
[2]	 K. D. Brandt, M. Doherty and L. S. Lohmander, Osteoarthritis, Oxford, U.K.:Oxford Univ. Press, pp. 598, 2003. 
[3]	The burden of musculoskeletal diseases in the United States, Rosemont, IL, USA, 2008.
[4]	C. R. Chu, A. A. Williams, C. H. Coyle and M. E. Bowers, "Early diagnosis to enable early treatment of pre-osteoarthritis", Arthritis Res. Therapy, vol. 14, no. 3, pp. 212, 2012.
[5]	D. Bhatia, T. Bejarano and M. Novo, "Current interventions in the management of knee osteoarthritis", J. Pharmacy Bioallied Sci., vol. 5, no. 1, pp. 30-38, 2013.
[6]	H. Shim, S. Chang, C. Tao, J. H. Wang, C. K. Kwoh and K. T. Bae, "Knee cartilage: Efficient and reproducible segmentation on high-spatial-resolution MR images with the semiautomated graph-cut algorithm method", Radiology, vol. 251, no. 2, pp. 548-565,  2009.
[7]	J. L. Jaremko, R. W. T. Cheng, R. G. W. Lambert, A. F. Habib and J. L. Ronsky,"Reliability of an efficient MRI-based method for estimation of knee cartilage volume using surface registration", Osteoarthritis Cartilage, vol. 14, no. 9, pp. 914-922, 2006. 
[8]	Y. Yin, X. Zhang, R. Williams, X. Wu, D. Anderson and M. Sonka, "LOGISMOS—Layered optimal graph image segmentation of multiple objects and surfaces: Cartilage segmentation in the knee Joint", IEEE Trans. Med. Imag., vol. 29, no. 12, pp. 2023-2037, Dec. 2010.  
[9]	Abedin, J. et al. (2019) “Predicting knee osteoarthritis severity: comparative modeling based on patient’s data and plain X-ray images,” Scientific reports, 9(1), p. 5761.
[10]	Alexos, A. et al. (2020) “Prediction of pain in knee osteoarthritis patients using machine learning: Data from Osteoarthritis Initiative,” in 2020 11th International Conference on Information, Intelligence, Systems and Applications (IISA. IEEE, pp. 1–7). 
[11]	Bandyopadhyay, S. and Sharma, P. (2016) “Detection of Osteoarthritis using Knee X-Ray Image Analyses: A Machine Vision based Approach.” Available at: (Accessed: August 4, 2021). 
[12]	Bany Muhammad, M. et al. (2019) “Deep ensemble network for quantification and severity assessment of knee osteoarthritis,” in 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA). IEEE, pp. 951–957. 
[13]	Chen, P. et al. (2019) “Fully automatic knee osteoarthritis severity grading using deep neural networks with a novel ordinal loss,” Computerized medical imaging and graphics: the official journal of the Computerized Medical Imaging Society, 75, pp. 84–92. 
[14]	Chen, T. and Guestrin, C. (2016) “XGBoost: A Scalable Tree Boosting System,” arXiv [cs.LG]. Available at: (Accessed: August 10, 2021). 
[15]	IEEE. Kwon, S. B. et al. (2020) “Machine learning-based automatic classification of knee osteoarthritis severity using gait data and radiographic images”, IEEE access: practical innovations, open solutions, 8, pp. 120597–120603. 
[16]	 " Knee Osteoarthritis pain prediction from X-ray imaging: Data from Osteoarthritis Initiative" Jorge I. Galván-Tejada, Víctor Treviño, José M. Celaya-Padilla, José G. Tamez-Peña.

DOI Link :

Download :

Refbacks : Currently there are no Refbacks


Authors are not required to pay any article-processing charges (APC) for their article to be published open access in Journal IJCERT. No charge is involved in any stage of the publication process, from administrating peer review to copy editing and hosting the final article on dedicated servers. This is free for all authors. 

News & Events

Latest issue :Volume 10 Issue 1 Articles In press

A plagiarism check will be implemented for all the articles using world-renowned software. Turnitin.

Digital Object Identifier will be assigned for all the articles being published in the Journal from September 2016 issue, i.e. Volume 3, Issue 9, 2016.

IJCERT is a member of the prestigious.Each of the IJCERT articles has its unique DOI reference.
DOI Prefix : 10.22362/ijcert

IJCERT is member of The Publishers International Linking Association, Inc. (“PILA”)

Emerging Sources Citation Index (in process)

IJCERT title is under evaluation by Scopus.

Key Dates

☞   LAST DATE OF SUBMISSION : 31st March 2023
In 7 Days

Important Announcements

All the authors, conference coordinators, conveners, and guest editors kindly check their articles' originality before submitting them to IJCERT. If any material is found to be duplicate submission or sent to other journals when the content is in the process with IJCERT, fabricated data, cut and paste (plagiarized), at any stage of processing of material, IJCERT is bound to take the following actions.
1. Rejection of the article.
2. The author will be blocked for future communication with IJCERT if duplicate articles are submitted.
3. A letter regarding this will be posted to the Principal/Director of the Institution where the study was conducted.
4. A List of blacklisted authors will be shared among the Chief Editors of other prestigious Journals
We have been screening articles for plagiarism with a world-renowned tool: Turnitin However, it is only rejected if found plagiarized. This more stern action is being taken because of the illegal behavior of a handful of authors who have been involved in ethical misconduct. The Screening and making a decision on such articles costs colossal time and resources for the journal. It directly delays the process of genuine materials.

Citation Index

Citations Indices All
Citations 1026
h-index 14
i10-index 20
Source: Google Scholar

Acceptance Rate (By Year)

Acceptance Rate (By Year)
Year Rate
2021 10.8%
2020 13.6%
2019 15.9%
2018 14.5%
2017 16.6%
2016 15.8%
2015 18.2%
2014 20.6%

Important Links

Conference Proposal