Impact Factor:6.549
Scopus Suggested Journal: |
International Journal
of Computer Engineering in Research Trends (IJCERT)
Scholarly, Peer-Reviewed, Open Access and Multidisciplinary
International Journal of Computer Engineering in Research Trends. Scholarly, Peer-Reviewed,Open Access and Multidisciplinary
ISSN(Online):2349-7084 Submit Paper Check Paper Status Conference Proposal
[1] Chait, Yossi and Yaniv, Oded, ``Multi-input/single-output computer-aided control design using the quantitative feedback theory,' International Journal of Robust and Non-linear Control,vol. 3,pp. 47-54,1993. R. M. Osgood, Jr., Ed. Berlin, Germany: Springer-Verlag, 1998. [2] Houpis, Constantine H., Steven J. Rasmussen, and Mario GarciaSanz. Quantitative feedback theory: fundamentals and applications. CRC press, 2005. [3] Patil, Mukesh D., and Kausar R. Kothawale``Design of robust PID controller for flexible transmission system using quantitative feedback theory (QFT),' Advances in Computing, Communication and Control (2011): 479-485. [4] Brown, Matthew, and I. R. Petersen,``Exact computation of the Horowitz bound for interval plants,'Decision and Control, 1991., Proceedings of the 30th IEEE Conference on. IEEE, 1991. [5] Fialho IJ, Pande V, Nataraj PSV, ``Design of feedback system using kharitonov’s segment in Quantitative Feedback Theory,' Proceeding of thr 1st QFT syposium,Dayton,OH,1992;457-470. [6] Zhao, Yongdong, and Suhada Jayasuriya ``On the generation of QFT bounds for general interval plants,' Transactions-American Society Of Mechanical Engineers Journal Of Dynamic Systems Measurement And Control 116 (1994): 618-618. [7] East, D. J, ``A new approach to optimum loop synthesis,' International Journal of Control 34.4 (1981): 731-748. [8] Longdon, L., and D. J. East, ``A simple geometrical technique for determining loop frequency response bounds which achieve prescribed sensitivity specifications,' International Journal of Control 30.1 (1979): 153-158. [9] Yang, Shih‐Feng, ``Generation of QFT bounds for robust tracking specifications for plants with affinely dependent uncertainties,'International Journal of Robust and Nonlinear Control 21.3 (2011): 237-247. [10] Chait, Yossi, Craig Borghesani, and Yuan Zheng. "Single-loop QFT design for robust performance in the presence of nonparametric uncertainties." Journal of dynamic systems, measurement, and control 117.3 (1995): 420-425. [11] Rodrigues, J. M., Y. Chait, and C. V. Hollot. "An efficient algorithm for computing QFT bounds." transactions-american society of mechanical engineers journal of dynamic systems measurement and control 119 (1997): 548-552. [12] Yang, Shih-Feng. "Efficient algorithm for computing QFT bounds." International Journal of Control 83.4 (2010): 716-723. [13] Nataraj, P. S. V., and Gautam Sardar. "Computation of QFT bounds for robust sensitivity and gain-phase margin specifications." transactions-american society of mechanical engineers journal of dynamic systems measurement and control 122.3 (2000): 528-534. [14] Nataraj, Palur SV. "Computation of QFT bounds for robust tracking specifications." Automatica 38.2 (2002): 327-334. [15] Nataraj, P. S. V., and Gautam Sardar. "Template generation for continuous transfer functions using interval analysis." Automatica 36.1 (2000): 111-119. [16] Gutman, Per‐Olof, Mattias Nordin, and Bnayahu Cohen. "Recursive grid methods to compute value sets and Horowitz–Sidi bounds." International Journal of Robust and Nonlinear Control 17.2‐3 (2007): 155-171. [17] Yang, Shih‐Feng. "Generation of QFT bounds for robust tracking specifications for plants with affinely dependent uncertainties." International Journal of Robust and Nonlinear Control 21.3 (2011): 237-247. [18] Bailey, F. N., and C-H. Hui. "A fast algorithm for computing parametric rational functions." IEEE transactions on automatic control 34.11 (1989): 1209-1212. [19] Ballance, D. J., and G. Hughes, ``A survey of template generation methods for Quantitative Feedback Theory,' (1996): 172-174. [20] Fu, Minyue. "Computing the frequency response of linear systems with parametric perturbation." Systems & Control Letters 15.1 (1990): 45-52. [21] BARTLETT, ANDREW C. "Computation of the frequency response of systems with uncertain parameters: a simplification." International Journal of Control 57.6 (1993): 1293-1309. [22] Patil, Mukesh D., P. S. V. Nataraj, and Vishwesh A. Vyawahare,'Automated design of fractional PI QFT controller using interval constraint satisfaction technique (ICST),' Nonlinear Dynamics69.3 (2012): 1405-1422. [23] Purohit, Harsh, and P. S. V. Nataraj, ``Optimized and automated synthesis of robust PID controller with quantitative feedback theory,' ." Industrial Instrumentation and Control (ICIC), 2015 International Conference on. IEEE, 2015. [24] Baida Zhang, Shuai Xu, Feng Zhang, Yuan Bi and Linqi Huang,``Accelerating MatLab Code using GPU: A Review of Tools and Strategies,'in Magnetism, vol. III, G. T. Rado and H. Suhl, Eds. New York: Academic, 1963, pp. 271–350. [25] https://www.researchgate.net/figure/270222593_fig1_Fig-1-CPUvs-GPU-Architecture [26] Chandrima Roy, Kalyankumar Datta and Devmalya Banerjee, ``Quantitative Feedback Theory based Controller Design of an Unstable System,'IJCA Proceedings on International Conference on Communication, Circuits and Systems 2012 iC3S(5):11-15, June 2013. [27] Amin, Shraddha. "Review On Quantitative feedback Theory (QFT) To Maintain Power System Stabilty." (2014). [28] Altman, Yair M ``Accelerating MATLAB Performance: 1001 tips to speed up MAT- LAB programs,' 2014.
![]() | V5I406.pdf |