Havinash P.H, Jeril Johnson N, Glen Thomas and Emily Stephen P, ,
Affiliations
:10.22362/ijcert/2016/v3/i9/48875
Abstract
Now days, E-commerce systems have become extremely important. Large numbers of customers are choosing online shopping because of its convenience, reliability, and cost. Client generated information and especially item reviews are significant sources of data for consumers to make informed buy choices and for makers to keep track of customer’s opinions. It is difficult for customers to make purchasing decisions based on only pictures and short product descriptions. On the other hand, mining product reviews has become a hot research topic and prior researches are mostly based on pre-specified product features to analyse the opinions. Natural Language Processing (NLP) techniques such as NLTK for Python can be applied to raw customer reviews and keywords can be extracted. This paper presents a survey on the techniques used for designing software to mine opinion features in reviews. Elven IEEE papers are selected and a comparison is made between them. These papers are representative of the significant improvements in opinion mining in the past decade.
Citation
Havinash P.H et al. ," Mining Opinion Features in Customer Reviews”, International Journal of Computer Engineering In Research Trends, 3(9):535-539, September-2016.
We have kept IJCERT is a free peer-reviewed scientific journal to endorse conservation. We have not put up a paywall to readers, and we do not charge for publishing. But running a monthly journal costs is a lot. While we do have some associates, we still need support to keep the journal flourishing. If our readers help fund it, our future will be more secure.