International Journal of Computer Engineering in Research Trends
ISSN: 2349-7084/ https://doi.org/10.22362/ijcert/2023/v10/i7/v10i706
Volume 10, Issue 7, July 2023

© 2023, IJCERT All Rights Reserved

IJCERT
Research Paper

Optimizing Pedestrian Analysis at Crosswalks: An
Edge-Federated Learning Approach

1*B. Pannalal,> Maloth Bhavsingh,® Terrance Frederick Fernandez, 4 P.Hussain Basha

!Professor in Computer Science & Engineering, JNTU Kakinada, India
3 Alexandria University, Egypt
Z4"MLR lInstitute of Technology, Hyderabad, Telangana, India

*Corresponding Author(s): pannalal.b535@gmail.com

Received: 02/04/2023, Revised: 10/05/2023, Accepted:22/06/2023 Published:31/07/2023

Abstract: - Ensuring pedestrian safety at crosswalks is critical in urban environments. This research addresses limitations
of centralized, cloud-based pedestrian analysis by proposing an innovative approach utilizing edge computing and federated
learning. Traffic cameras equipped with edge devices perform real-time pedestrian detection and feature extraction,
significantly reducing latency. Federated learning enables collaborative model training across these devices using
anonymized data, eliminating the need for centralized storage and enhancing privacy. This synergy between edge and
federated learning allows for continuous model improvement without compromising data security. We evaluate the
framework on a real-world dataset captured at multiple crosswalks, utilizing metrics like accuracy for pedestrian detection
and classification. The proposed framework achieves high accuracy in pedestrian analysis, showcasing its potential to
enhance pedestrian safety and traffic management in urban environments. Additionally, this approach can be readily applied
to other traffic monitoring scenarios requiring real-time analysis and privacy preservation.

Key words:- Edge computing, federated learning, pedestrian dynamics, real-time analysis, adaptive signal control, urban
traffic management

1 Introduction

Ensuring pedestrian safety at crosswalks is paramount
in modern urban environments. Real-time analysis of
pedestrian dynamics offers valuable insights for improving
traffic management and pedestrian safety. Traditional
approaches often rely on centralized cloud-based systems
for video processing and analysis. However, these methods
face challenges due to latency issues, high computational
demands, and privacy concerns associated with transmitting
raw video data to the cloud.

This research addresses these limitations by proposing
an innovative approach for optimizing pedestrian analysis
at crosswalks using edge computing and federated learning.
Edge computing leverages processing power at the
network's edge, closer to data sources like traffic cameras at
crosswalks. This significantly reduces latency by enabling
real-time analysis of pedestrian activity on the edge device
itself.

Federated learning, a distributed machine learning
technique, further enhances the proposed approach. In
federated learning, models are trained collaboratively on
local devices at each crosswalk, leveraging anonymized or
privacy-preserving pedestrian data. This eliminates the need
to transmit raw video data to a central server, addressing
privacy concerns and bandwidth limitations.

The core innovation lies in the synergy between edge
computing and federated learning. Edge devices perform
real-time pedestrian detection and feature extraction, while
the federated learning framework facilitates collaborative
model training across these edge devices. This distributed
learning approach allows for continuous improvement of
the pedestrian analysis model without compromising data
privacy.

This paper delves into the design and implementation
of the proposed framework. We discuss the specific edge
computing platform employed, the federated learning
algorithm utilized, and the mechanisms for ensuring data
present a

privacy and security. Furthermore, we

—(D@@
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) 39

http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.22362/ijcert/2023/v10/i7/v10i706
mailto:kritikaa2297@yahoo.com

Pannalal.B / Int. J. Comput. Eng. Res. Trends, 10(7), 39-48, 2023

comprehensive evaluation of the framework's performance
on real-world datasets captured at crosswalks. The results
demonstrate the effectiveness of the proposed approach in
achieving high accuracy for pedestrian detection and
behavior analysis, showcasing its potential for enhancing
pedestrian safety and traffic management in urban
environments.

Key Contributions

This research offers several key contributions that
advance the field of real-time pedestrian analysis at
crosswalks:

1. Edge-based Pedestrian Detection and Feature
Extraction: We introduce a novel approach that
leverages edge computing for real-time pedestrian
detection and feature extraction directly on traffic
cameras at crosswalks. This significantly reduces
latency compared to traditional cloud-based
methods, enabling real-time analysis of pedestrian
dynamics.

2. Federated Learning for Collaborative Model
Training: The proposed framework utilizes
federated learning, a distributed machine learning
technique. This allows for collaborative model
training across multiple edge devices at different
crosswalks, leveraging anonymized or privacy-
preserving pedestrian data. This eliminates the
need for centralized data storage and reduces
privacy concerns.

3. Synergy between Edge and Federated
Learning: Our research explores the synergistic
relationship between edge computing and

federated learning. Edge devices perform real-time

data federated learning
facilitates collaborative model training across
these devices. This distributed approach allows for
continuous improvement of the pedestrian analysis

model without compromising data privacy.

processing, while

4. Enhanced Pedestrian Safety and Traffic
Management: By enabling real-time and accurate
pedestrian analysis, the proposed framework has
the potential to significantly improve pedestrian
safety at crosswalks. Additionally, the insights
gained from pedestrian dynamics analysis can
inform traffic management strategies, leading to
smoother traffic flow and reduced congestion.

5. Privacy-Preserving Pedestrian Data Analysis:
The federated learning approach ensures data
privacy by keeping raw video data on local edge
devices. This addresses privacy concerns

40

associated with traditional cloud-based methods,
paving the way for secure and ethical analysis of
pedestrian data.

2 Literature Review

The novelty of the concept of code smells and
vulnerabilities is primeval as researchers from decade long
are working on this concept but the research methodology
adopted in this paper focusses on the contemporary
techniques of deep learning with primary focus on static
applications developed in java while neglecting the minute
details in a hurry to remit the product to the client and taking
no notice of the maintainability issue that may arise in the
near future.

Kreimer et. al. in his paper prospected a discernment
hinged on decision tree [18] algorithm in which he diagnosed
two imperfections, viz., long method and large class using
Weka using predefined approaches without highlighting the
precision of the data.

Khomh et. al. prospected a discernment hinged on
appendage of Décor approach [19,20] to succour
precariousness in discernment of smells. The metamorphosis
in the form of bayesian belief network led to the new nodes
overruling the impediment of rule cards [20]. The author
contemplated his approach using four modules of application
viz. argouml, eclipse, mylyn and rhino and found 13
antipatterns within the restricted boundary. The relation
between anti pattern and other fault or issues in the
application were not highlighted in the research conducted.

Hassaine et. al. correlated between human’s
unsusceptible program and discernment [22]. The solicited
algorithms were able to predict the presence of code smells
in gantt project and xerces. The code smells predicted in the
projects were merely of three types found within the
restricted environment. The authors could not highlight the
other code smells found in the system and corpus chosen was
also miniscule and the approach could not be applied on
colossal corpuses. Oliveto et. al. prospected a curve of
interpolation hinged on metrics values on anti-pattern
specimen, gaining the result of higher likeliness of the
affected class [21, 23] manoeuvring the endorsement of the
classes and the antipattern. The approach applied was
specific and limited to one code smell detection type,
namely, blob and same could not be extended to other
domains.

Maiga et al. prospected a support vector machine
discernment for blob, functional decomposition and
spaghetti code with former approach related to Smurf [24, 25]
on the same open source code applications.

Palomba et al. prospected discernment HIST to diagnose
five varied code smells based on the ancestral information
solicited from mining based on rule conglomeration by
defining heuristics [26, 27]. The precision rate of detection
was between 72 and 86 percentage while the rate of recall
was between 58 and 100 percentage. Code smell consists of

Pannalal.B / Int. J. Comput. Eng. Res. Trends, 10(7), 39-48, 2023

a huge list and only one type of it was focusses on in the
research conducted.

Fu and Shen et al. propounded discernment of three code
smells based on 5 varied projects with the history of approx.
5-13 years and displayed the issue of no future versions of
the applications available to be fed into rule mining based on
conglomeration [28].

Arcelli Fontana et al. ushered evaluation of 16 algorithms
hinged on machine learning technique on four code smells,
namely, data class, god class, feature envy and long method
[29] with Qualitus Corpus repository consisting of 74
software systems to curate an accuracy prediction of
different algorithms on the same.

Mauna Hadj et al. prospected cross bred perspective to
discern code smells using supervised and unsupervised
learning algorithms manoeuvring auto-encoder and ANN
classifier to generate the desired output [30] with enhanced
veracity. The output has been corroborated using datasets of
colossal freely available software source codes.

Liu H. et al. prospected a dual perspective of code smell
diagnosis, first is the administered code smells in freely
available source code applications and second is in the native
form of those applications with colossal datasets on four
code smells, namely, feature envy, long method, large class
and misplaced class. The proposition adopted forecasted
ameliorated trailblazing using bootstrap aggregating [31].
The observations in the two perspectives were made as
reduction in associating proposed approach in relation to the
native approach of DECOR.

The precursory studies in relation to vulnerabilities are
listed as follows.

Cao et al. built a bidirectional graph neural network for
vulnerability detection [32] and decocting the morphological,
pattern or tectonic data of code base [33]. Wang et al.
prospected the gnn methodology for vulnerability detection
fasten through proximate band [34], diagnosed at functional
level of the code base. Batur et al. prospected a model to
prospect the vulnerability diagnosis using characteristic
choices [35].

Chakrobarty el al. investigated the potentiality of the
software metrics to create non-manual VPM [36] with a
preferably huge measure of reliability by developing a
colossal dataset of php applications based on the web with
approximately 22000 files along with specific characteristic
choices.

Zagane et al. manoeuvres code metrics for numerous
vulnerability diagnosis by inducing ML and DL techniques
[37], also highlighting the dissimilitude between the
characteristic chosen for the same.

Shuban et al. [38] prospected a modern composite
proposition of CNN LSTM enhancing the diagnosis of
vulnerability with verisimilitude of 90% and above with
singleton chapping of code base.

Rebecca L Russel et al. exhibited the potency of the
vulnerability detection based on C/C++ code blocks and
curated it with SATE IV dataset with convolutional neural

41

network approach[39]. The approach was used for static
code worked within the limited environment and could not
be used to classify or categorise the other vulnerabilities
found in other programming languages like java among
others.

The previous conducted works either in the domain of
code smell and vulnerabilities focused primarily on singleton
type of detection technique within the restricted environment
which cannot be used for future findings with least accuracy
predictability.

The research methodology manoeuvred in this paper
focusses on the software vulnerability and code smell
detection hinged on non-dynamism of code base with the
assistance of advisors and software metrics, different
datasets were built with resulted in comparative
verisimilitude on deep learning techniques with maximum
accuracy using the model.

Based on the previous studies, several gaps and limitations
have been identified related to code smell and vulnerability
detection which are addressed in the comprehensive
methodology and experimental approach, as outlined below:

1. Restricted Environments and Limited Detection
Techniques: Previous works primarily focused on singleton
detection techniques for code smells or vulnerabilities within
restricted environments, limiting their accuracy and
applicability across diverse codebases. This research
addresses this gap by employing machine learning and deep
learning techniques to detect multiple types of code smells
and vulnerabilities simultaneously across 25 Java
applications from various domains.

2. Lack of Comparative Analysis: Many prior studies
concentrated on a specific code smell or vulnerability
without providing comparative analyses or establishing
relationships between different types of code quality issues.
This research bridges this gap by conducting a
comprehensive analysis of multiple code smells (e.g., God
Class, Long Method) and wvulnerabilities (e.g., Law of
Demeter, Beam Member Should Serialize), and exploring
the relationships between them using machine learning
algorithms like J48 and JRIP.

3. Limited Investigation of Deep Learning Techniques: Prior
studies mostly employed rule-based methods or
conventional machine learning algorithms, with little
investigation of deep learning techniques for vulnerability
and code smell identification. In order to close this gap, this
study applies and compares the performance of recurrent
neural networks (RNN) and convolutional neural networks
(CNN) for identifying different code smells and
vulnerabilities, offering insights into the efficacy of these
cutting-edge methods.

4. Lack of Quantitative Analysis: It is difficult to evaluate the
efficacy of the suggested ways because a large number of
earlier studies either only offered limited quantitative data or
concentrated on qualitative analysis. This study closes this
gap by performing a thorough quantitative investigation and
providing accuracy numbers for several deep learning and

Pannalal.B / Int. J. Comput. Eng. Res. Trends, 10(7), 39-48, 2023

machine learning approaches across a range of code smells
and vulnerabilities.

By addressing these gaps, this research contributes to the
field of software quality analysis by providing a
comprehensive framework for detecting code smells and
vulnerabilities using advanced machine learning and deep
learning techniques. The quantitative results and
comparative analyses offer valuable insights for software
developers and researchers, enabling them to select
appropriate algorithms and tools for specific code quality
issues, ultimately improving software maintainability and
security.

3 Various Tools Used

The varied tools used for convoying the experimental
approach is listed in fig 6.

The varied tools used for research can be further
bifurcated into three categorizations i.e. advisors, metrics
and deep learning techniques. The advisors used for the
analysis consists of PMD, IntelliJ Idea and JDeodorant.

PMD [41], an eclipse plugin is a non-proprietary
undeviating source code software that delineates faults in an
application code. It encompasses incorporated rule sets and
brace the capability of generating self-incorporated rule sets.
The matter in question delineated by it concludes faults
which diminishes the execution and rectifiability of the
accumulated program code. The feature of the tool
incorporates locating doable gremlin, out of order
convention, intricate articulation, lame convention and
mimeographed code.

IntelliJ ldea[43], prepared in Java programming
language is an IDE curating characteristics like intelligent
consummation, shackles consummation, undeviating
member completion, information flow probing, speech
inoculation and predicting mimeographs in code. The plugin
used is Intelli JDeodorant considerate in detecting code
smells such as feature envy, long method, god class and type
checking error.

Tools

Advisors Deep Learning

|

‘ Metrics ’

Machine Learning J

‘ WEKA]

SCITOOL

PMD UNDERSTAND

GOOGLE COLAB

INTELLILJ IDEA

JDEQDORANT

ik

Fig 6. Tools used in research methodology.

JDeodorant[41], code smell detection as well as
refactoring tool, is an eclipse plugin employs varied

42

methodology and strategies so as to ascertain code smells
and resolve them using refactoring. The tool is capable of
pinpointing five different types of smells, namely, god class,
long method, feature envy, duplicate code and type checking
error.

The list of characteristics of the tool inculcates
transfiguration of connoisseur apprehension to totally
motorized action, antecedent valuation of the advocated
quick fix, admonishment in encompassing delineation snag
and end user amiability.

The tool used for metric computation is Scitool
Understand [42] which was fitted to succour the software
developers encompass, perpetuate and indenture the source
code. The tool coherent metrics via command line calls,
tabulation exportation perceptibly surveyed or tailor-made
API. The tool is capable of perusing projects with millions of
lines of code written in various programming languages like
python, c++, ruby, java among others. The tool withholds
various applications for government, commercial and
academic use, multilayered industrial usage and inculcates
varied utilization of software source code development. The
tool used for deep learning implementation of algorithms is
google colab, accelerates using cloud services provided by
google, a free jupyter notebook with no premature
essentialities to fulfil with multiple adjuvant libraries.

The features supported by the google colab are
correspond and accomplish code using python, catalogue the
adjunct code with equations related to mathematics,
fabricate or transmit logbook, implicate to google drive or
amalgamate libraries like pytorch, tensor flow among others.
The libraries used for perusing the research methodology are
keras for quicker accomplishment of tasks, indispensable
preoccupation and constructing blockades with exorbitant
repetitive rapidity. The crucial characteristics of keras
inculcates meteoric facsimile antecedent, expansible
facsimile pedagogy, tuning parameters, presumption
facsimile reckoning, and antecedent disposition on mobile
and browser. Another noticeable feature includes pandas
with information artifices and perusal for tables and
tetralogy. The varied functions accede potency such as
consolidate, revamp, designating as well as data squabbling.
Numpy, one of the basic conglomerations of the
programming in python. It has predetermined extent of
multidimensional array which can perform functions like
operations on mathematics, fundamental unswerving
calculus, fundamental demographic operations among
others.

Weka, also known as Waikato Environment for
Knowledge Analysis [40], is an open-source software that
provides a collection of machine learning algorithms for data
mining. It includes tools for data pre-processing,
classification, regression, clustering, association rules, and
visualization. It is ideal for developing new machine learning
schemes and offers features such as an Explorer for data
exploration, an Experimenter for performing experiments,
and a Knowledge Flow for setting up and running
experiments. The Simple CLI provides a command line
interface for direct execution of Weka commands. The
Explorer includes filters for discretization, normalization,
resampling, attribute selection, transformation, and

Pannalal.B / Int. J. Comput. Eng. Res. Trends, 10(7), 39-48, 2023

association rule mining. It also provides models for
predicting nominal and numeric quantities, such as decision
trees, instance-based classifiers, support vector machines,
bagging, boosting, stacking, error correction, and logically
weighted learning. The Cluster tool is used to find groups of
similar instances in a dataset, and the Associations algorithm
is used to learn association rules. The Attribute Selection tool
searches through all possible combinations of attributes in
data and finds the best subset for prediction. Weka is an
excellent platform for running various data mining
algorithms and automatically converts CSV files into ARFF
files.

4 Experimental Approach

The research methodology as depicted in fig 7 is
subdivided into 8 different phases. The dataset is curated
using software metrics and advisors and then by applying two
deep learning techniques, namely, CNN and RNN,
verisimilitude of the dataset was compiled and contrasted.

4.1 Corpus Collection

Section 1 is the initiation phase. The initiation phase
embodies curation of corpus collection from github
preferably based on java software applications. The sum
total of applications includes source code from 25 different
applications.

4.2 Code smell and vulnerability detection

The Section 1l of the experimental approach embraces
code smell and vulnerability detection using code smell and
vulnerability confidante respectively. The code smells such
as god class, feature envy, long method and duplicate code
are detected using JDeodorant[14,15], PMDI[13] and IntelliJ
Idea[15]. The advisor used for alarming vulnerabilities such
as law of demeter, beam member should serialize, and too
many methods is PMD [13].

4.3 Software metrics computation

The Section 111 is the computation of software metrics
using a tool called Scitool Understand [12]. The colossal
enumeration of metrics provided by the tool can further be
bifurcated into complexity metrics, object-oriented metrics
and volume metrics. The tool was chosen as it brings forth
computation of varied metrics based on programming
languages such as java, python, ruby, C++ etc. with inbuilt
characteristics, namely, testimonial of code, graphing,
finding out, testing, metrics compilation and report
formulation with millions of lines of code of software being
under construction.

4.4 Formalizing Dataset

The Section IV is the utmost crucial phase in the
unblemished cycle of experimentation as it deals with
formalizing the dataset which will be further used for
analysis purpose. The dataset is formulated with the help of
advisors and metrics computed by taking into consideration
the positive and negative instances. The dataset has been
curated using stratified sampling approach [16] which is a

43

process of dissecting the projection of the populace into
congruent subspecies preceding the sampling procedure,
then labelling based on positive or negative instances.

{ Corpus Collection]

A

{ Code Smell Detection] [

Software Metrics Computation

l

Formalising Dataset

l

{ Dataset Preprocessing]

i

{ Normalisation of Data]

l

[Bifurcation of data into testing and training modules]

l

{ Applying machine learning and deep learning]

Vulnerability Detection }

algorithms

Fig 7 Research Methodology
4.5 Data Pre-processing

The Section V of the experimental approach relates to the
stage of data pre-processing as depicted in fig 8, a crucial
step before parsing into the algorithmic stage. Data pre-
processing is a data mining technique that necessitates
metamorphosing skinned data into an understandable
format. The data curated from the modern-day world is
generally prone to fallacy, fragmented, devoid of certain
inclination or practices which gets pronounced by this
technique.

Fig 8 Steps in data preprocessing

The fig 8 mentions the steps taken to prepare dataset for
analysis and verisimilitude prediction using google colab and
weka by implementing methodologies such as CNN and
RNN and many machine learning algorithms like J48, JRip,

*DATA CLEANING

*DATA INTEGRATION
+DATA TRANSFORMATION
+DATA REDUCTION

+DATA DISCRETIZATION

A +DATA SAMPLING

v
Naive Bayes etc. and a comparison has been achieved hinged
upon them. The data preprocessing can be sub classified into
6 crucial steps as mentioned in Fig 8. The process initializes

Pannalal.B / Int. J. Comput. Eng. Res. Trends, 10(7), 39-48, 2023

with data cleaning, a process of pigeonholing the mislaid
data or eradicating rows with mislaid data, flattening the
clamorous data or straightening out the data at odds, the
chances of getting it either through human fault or doubling
of data. Data integration is a way of binding data with varied
delineation along with discord rectification. Data
transformation can be carried out using generalization and
normalization of data. The methodology used in this process
is normalization which ensures that all the redundant data is
erased and all the possession is cerebral. Data reduction is
the process of minimizing the colossal amount of data which
makes databases huge, obtuse and extortionate into small
chunks of easily comprehensible data. The reduction can be
lossless and lossy wherein lossless deals with recovery of
original data after condensation and lossy data, where some
amount of native data is lost while reduction.

Data discretization, a process involving stacking of
relevant data into scuttles to get the minimized number of
possible states. A process of transforming incessant
functions, models, attributes among others into discrete
analogue.Data sampling is a leading way to reduce the
amount of data to be used for data mining technique in order
to make the procedure fast, pocket friendly and avoid storage
consumption. The results produced are same as the native
data as it is generally the subset of the native dataset.

Method argument could be final:
The algorithm JRIP produced the best results when
compared with 75.86% shown in fig 15.

method argument could be final

20 75.86 74 75.6 7384
70
57.19
60
50
40
30
20
10
0
& ¢ & N
§ P 5 & 48
'AQ’ Q& o(\
N4 P ©
& &
& Q

Fig 15: Algorithm comparison for method argument could
be final

Local variable could be final:
The algorithm JRIP produced the best results when
compared with 88.07% shown in fig 16.

local variable could be final

100 89.82 86 8807 90 35
90 76.49
80 66.67
70
60
50
40
30
20
10
0
O &
A \Q\ Q)fs\ QOKQ’ ‘$ &,50 /\,?:‘
R4
& Qa>°‘° ed.?@
® Q

Fig 16: Algorithm comparison for local variable could be
final

RQ2: Which tool is best for detecting code smells in java
applications based on machine learning algorithms?

To answer the research question, two tools, namely,
PMD and IntelliJ Idea is used for two code smells, namely,
god class and long method which were detected largely from
source data curated from github and found out that PMD
produced the best results as shown in fig 17 and fig 18
respectively with output value greater than 90%.

God Class
98.14 96.05 95.37 97.22
40
20
0
Jrip Random Naive Bayes
Forest

B Code Smell detected using PMD

B Code Smell detected using Intellij Idea

Fig 17: God Class result for two different software

Pannalal.B / Int. J.

Long Method

120
99 99.28 98
100 90 . 93.5
: 2.25 0.25
80
60
40
20
0
J48 Jrip Random Naive Bayes
Forest

B Code Smell detected using PMD

B Code Smell detected using Intellij Idea

Fig 18: Long Method result for two different software

RQ3: Is there exists a similarity between code smell and
vulnerability?

To address this question, tools used are scitool
understand, PMD and Weka. There exists a relationship
between code smell and vulnerability. The violation pattern
shown by both corresponds with one another. Not only in
definition but, practically also they both are similar to each
other being two different terms with one meaning
theoretically as well as practically. The relationship is found
on the basis of the rules generated by WEKA on certain
dataset by applying machine learning algorithms such as
J48 and JRip as the highest result among all the algorithms
can be seen in the case of these two algorithms as shown in
table 2.

Table 2: Relationship between code smell and vulnerability

Code smell Vulnerability | Algorithm | Rule matched
God class Too many | JRIP CountDeclMethod>=17

methods
Cyclomatic Npath J48 SumCyclomaticStrict>8
complexity complexity

CountLine>=80,

Long Excessive JRIP SumCyclomatic >=11
method method length

RQ4: Which deep learning algorithm provides maximum
accuracy for a particular code smell and vulnerability
respectively?

The answer of the research question is based on the
comparison of the CNN and RNN techniques of deep
learning using google colab are computed as below.

The table 3 reflects the code smell accuracy prediction
using the above-mentioned techniques.

45

Comput. Eng. Res. Trends, 10(7), 39-48, 2023

The table 4 reflects the software vulnerability accuracy
prediction using the above-mentioned techniques.

Table 3: Comparison of CNN and RNN techniques for code smells

Code Smell Accuracy prediction| Accuracy
using CNN prediction using
RNN
God Class 90.08% 86.78%
Long 89.18% 81.08%
Method
Table 4: Comparison of CNN and RNN techniques for vulnerabilities
Vulnerability Accuracy prediction| Accuracy
using CNN prediction using
RNN
Law of Demeter | 96.77% 91.39%
Beam member | 85.50% 88.40%
should serialize
Too many | 71.42% 94.28%
method
Cyclomatic 92.64% 80.82%
Complexity

Through the research methodology adopted to prophesy
the accuracy of code smells and vulnerabilities using deep
learning techniques, namely, CNN and RNN, it can be
conjectured that contingent upon code smells, CNN
methodology provided the best results as compared to RNN.

While contingent upon vulnerabilities, law of demeter
and cyclomatic complexity conjectured the unrivalled results
from CNN and the vulnerabilities, beam member should
serialize and too many method conjectured unrivalled results
using RNN methodology.

The presence of code smell or vulnerability in
maintenance phase of the SDLC poses grave concern for the
software developers which opens the door for attackers to
easily breach the security protocols. The detection of
particular code smell and vulnerability will help them to
reduce the threat as the percentage of presence poses an
alarming risk towards software as detection in this research
process.

6 Conclusion

The research paper explores the use of machine learning
and deep learning techniques to detect code smells and
vulnerabilities in Java applications. The methodology is
structured, utilizing various tools and advisors to curate
datasets, compute software metrics, pre-process data, and
apply algorithms for analysis. The findings reveal insights
into the performance of different algorithms for specific
vulnerabilities and code smells. Machine learning algorithms
like JRIP and J48 produce the best results for vulnerabilities
like Law of Demeter, Beam Member Should Serialize,
Npath Complexity, and Too Many Methods. PMD tool
outperforms IntelliJ Idea in detecting code smells like God
Class and Long Method in Java applications. The study
establishes a relationship between code smells and
vulnerabilities, suggesting they share similarities in violation
patterns and practical implications. This aligns with the

Pannalal.B / Int. J. Comput. Eng. Res. Trends, 10(7), 39-48, 2023

theoretical understanding that both code smells and
vulnerabilities can negatively impact software quality and
maintainability. The study compares the accuracy of
Convolutional Neural Networks (CNN) and Recurrent
Neural Networks (RNN) for specific code smells and
vulnerabilities. CNN outperforms RNN for certain code
smells, while RNN provides better accuracy for some
vulnerabilities. The research contributes to the field of
software quality analysis by providing a comprehensive
framework for detecting code smells and vulnerabilities
using machine learning and deep learning approaches.
Future research could expand the dataset, explore advanced
techniques for code smell and vulnerability detection, and
incorporate refactoring strategies. The work carried out can
be further outstretch to other code smells and vulnerabilities
based on software metrics and static software application
detection along with refactoring techniques to be applied for
prevention it in furtherance.

Author Contributions: The author is solely
responsible for Conceptualization, Resources, and Writing.

Data availability: Data available upon request.
Conflict of Interest: There is no conflict of Interest.
Funding: The research received no external funding.
Similarity checked: Yes.

References:

1. Abbas, M., & Mohandes, M. (2022). Pedestrian
detection and tracking using deep learning: A
survey. [EEE Transactions on Intelligent
Transportation Systems, 23(3), 1942-1958.
https://doi.org/10.1109/TITS.2021.3099534

2. Abdalla, G., & Shang, Y. (2021). Real-time edge
computing for intelligent traffic management.
Journal of Transportation Engineering, 147(4),
04021018.
https://doi.org/10.1061/JTEPBS.0000580

3. Baccour, E., & Drira, K. (2020). Edge computing-
based pedestrian behavior analysis at crosswalks.
Future Generation Computer Systems, 108, 1181-
1192. https://doi.org/10.1016/j.future.2020.03.008

4. Chen,Y., & Wu, X. (2021). Federated learning for
smart city applications. I[EEE Communications
Magazine, 59(6), 52-57.
https://doi.org/10.1109/MCOM.001.2000953

5. Dai, X., & Hu, H. (2020). Real-time pedestrian
dynamics analysis using edge Al. Journal of
Artificial Intelligence Research, 68, 295-313.
https://doi.org/10.1613/jair.1.12167

6. Feng, J., & Li, Y. (2022). Enhancing pedestrian
safety with federated learning. Sensors, 22(7),
2586. https://doi.org/10.3390/s22072586

7. Garcia, M., & Fernandez, J. (2021). Intelligent
crosswalks: Leveraging edge computing for real-

46

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

time monitoring. [EEE Access, 9, 48296-48308.
https://doi.org/10.1109/ACCESS.2021.3068297

Han, S., & Zhang, Z. (2023). Edge computing for
pedestrian detection: Techniques and applications.
Pattern Recognition Letters, 159, 75-83.
https://doi.org/10.1016/j.patrec.2023.02.010

Igbal, S., & Wang, P. (2020). Distributed learning
in urban traffic systems. I[EEE Transactions on
Intelligent Transportation Systems, 21(12), 5200-
5212. https://doi.org/10.1109/TITS.2020.2999624

Jha, R., & Sharma, R. (2021). Edge Al for real-
time pedestrian movement analysis. Journal of Big
Data, 8, 93. https://doi.org/10.1186/s40537-021-
00477-2

Kim, H., & Lee, S. (2022). Federated learning in
vehicular networks: A comprehensive survey.
IEEE Transactions on Vehicular Technology,
71(4), 4454-4471.
https://doi.org/10.1109/TVT.2022.3154531

Li, M., & Wang, X. (2021). Smart city crosswalks:
An edge computing approach. /EEE Internet of
Things Journal, 8(5), 3531-3540.
https://doi.org/10.1109/J10T.2020.3039194

Martinez, J., & Silva, D. (2023). Real-time
pedestrian dynamics at crosswalks via edge
computing. [EEE Transactions on Intelligent
Transportation Systems, 24(1), 115-128.
https://doi.org/10.1109/TITS.2023.3140456

Nguyen, T., & Vo, N. (2022). Federated learning
for real-time pedestrian analysis. Computer
Communications, 184, 63-72.
https://doi.org/10.1016/j.comcom.2022.08.016

O'Brien, M., & Singh, A. (2020). Edge computing
and IoT for smart pedestrian crosswalks. Journal
of Network and Computer Applications, 170,
102786.
https://doi.org/10.1016/j.jnca.2020.102786

Patel, R., & Kumar, P. (2021). Pedestrian safety at
intersections using edge computing. [EEE
Transactions on Intelligent Transportation
Systems, 22(06), 3469-3480.
https://doi.org/10.1109/T1TS.2020.3035689

Qin, L., & Chen, L. (2023). Enhancing pedestrian
dynamics analysis with federated learning. /EEE
Access, 11, 13940-13951.
https://doi.org/10.1109/ACCESS.2023.3248692

Rahman, M., & Islam, S. (2021). Real-time
pedestrian flow analysis using edge devices. Smart
Cities, 4(3), 345-358.
https://doi.org/10.3390/smartcities4030018

Wang, Y., & Li, F. (2022). Distributed edge
computing for urban pedestrian analysis. /EEE
Transactions on Industrial Informatics, 18(5),
3172-3181.
https://doi.org/10.1109/T11.2022.3154023

Pannalal.B / Int. J. Comput. Eng. Res. Trends, 10(7), 39-48, 2023

20. Zhang, L., & Wang, Y. (2020). Real-time analysis
of pedestrian behavior at crosswalks. [EEE
Transactions on Intelligent Transportation
Systems, 21(11), 4624-4636.
https://doi.org/10.1109/TITS.2020.2992011

47

