International Journal of Computer Engineering in Research Trends
ISSN: 2349-7084/ https://doi.org/10.22362/ijcert/2024/v11/i3/v11i301
Volume 11, Issue 3, March 2024

© 2024, IJCERT All Rights Reserved

IJCERT
Research Paper

BioShieldNet: Advanced biologically inspired
mechanisms for strengthening cybersecurity in
distributed computing environments

Elnhadj Benkhelifa, 2Lokhande Gaurav, *Vidya Sagar S.D

"IProfessor in Data Analysis & Network Security, University of Benin, Nigeria
24 Anna University, Chennai, India
$ Kuvempu University, Karnataka, India

*Corresponding Author(s): elhadj.benkhelifa49@gmail.com

Received: 01/11/2023, Revised: 28/01/2023, Accepted:16/03/2024 Published:29/03/2024

Abstract: -The objective of this research is to develop BioShieldNet, an advanced cybersecurity framework inspired by
biological systems, aimed at addressing the evolving threats in distributed computing environments. This study employs a
combination of experimental research and simulation techniques to design and evaluate biologically-inspired security
mechanisms, including adaptive immune responses, self-healing capabilities, and evolutionary adaptation. The framework
integrates advanced machine learning algorithms and pattern recognition techniques to enhance threat detection and
mitigation. Results indicate that BioShieldNet achieves a 97.8% detection accuracy for zero-day vulnerabilities and reduces
false positives by 23% compared to traditional cybersecurity methods. Furthermore, the adaptive and self-healing capabilities
of BioShieldNet improve system resilience, reducing response time to new threats by 35%. Scalability tests demonstrate the
framework's efficiency in handling large-scale distributed environments, with a 15% increase in throughput. The findings
underscore the significant potential of BioShieldNet to enhance cybersecurity, offering a robust and scalable solution for
protecting complex network infrastructures. This research contributes to the field by providing a novel, interdisciplinary
approach to cybersecurity, with broad implications for the development of resilient and adaptive security systems.

Keywords: - BioShieldNet, biologically inspired cybersecurity, adaptive immune responses, machine learning, threat
detection, distributed computing environments.

1 Introduction

In recent years, the proliferation of distributed
computing environments, including cloud computing, edge
computing, and Internet of Things (IoT) networks, has
significantly transformed the technological landscape.
These systems offer unparalleled flexibility, scalability, and
resource efficiency, facilitating a wide range of applications
from data-intensive analytics to real-time monitoring and
control. However, this evolution has also introduced new
and complex cybersecurity challenges, as the increased
interconnectedness and heterogeneity of these
environments create expansive attack surfaces vulnerable to
a myriad of cyber threats.

Conventional cybersecurity solutions, while effective
in certain scenarios, often fall short in addressing the

dynamic and evolving nature of threats within distributed

systems. Traditional static defense mechanisms are
insufficient for detecting and responding to sophisticated
attacks such as zero-day exploits, advanced persistent
threats (APTs), and distributed denial-of-service (DDoS)
attacks. Moreover, these systems typically lack the
adaptability and resilience required to cope with the fast-
paced changes in threat landscapes. The reliance on
signature-based detection methods leads to a significant lag
in identifying novel threats, resulting in potential breaches
and data loss. Additionally, the complexity and scale of
distributed environments further exacerbate the limitations
of existing cybersecurity frameworks, making them

challenging to implement and manage effectively.

The critical need to enhance cybersecurity in
distributed computing environments necessitates the

OO
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) 1

http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.22362/ijcert/2024/v11/i3/v11i301
mailto:kritikaa2297@yahoo.com

Elhadj Benkhelifa et al. / Int. J. Comput. Eng. Res. Trends, 11(3), 1-9, 2024

development of advanced, adaptive, and resilient defense
mechanisms. Current approaches are inadequate in
providing comprehensive protection against emerging and
sophisticated cyber threats. There is a pressing need for
innovative solutions that can dynamically adapt to new
attack vectors, self-heal from damage, and provide robust
and scalable security across diverse and complex network
architectures.

The motivation for this study stems from the potential
of biologically-inspired mechanisms to address the
limitations of traditional cybersecurity solutions. Biological
systems, through millions of years of evolution, have
developed highly effective strategies for dealing with
threats, including adaptive immune responses, self-healing
capabilities, and evolutionary adaptation. By emulating
these natural processes, it is possible to create cybersecurity
frameworks that are more resilient, adaptive, and capable of
handling the complexities of modern distributed computing
environments. This interdisciplinary approach holds
promise for advancing the state of cybersecurity by
introducing novel methods that are both theoretically sound
and practically viable.

1. Innovative
Mechanisms:

Biologically-Inspired Security
Introduction of novel security
inspired by biological systems,
designed to enhance cybersecurity in distributed
environments through self-healing, adaptive
immune responses, and evolutionary adaptation.

mechanisms

2. Comprehensive Framework for Distributed
Security: Development of BioShieldNet, a
comprehensive framework integrating various
biologically-inspired techniques to
cohesive and resilient cybersecurity architecture.

create a

3. Enhanced Threat Detection and Mitigation:
Utilization of advanced machine learning
algorithms and pattern recognition techniques to
improve the accuracy and efficiency of threat
detection and mitigation, including zero-day
vulnerabilities.

4. Adaptive and Self-Healing Capabilities:
Implementation of adaptive and self-healing
mechanisms, allowing the system to continuously
evolve and adjust its defense strategies in response
to emerging threats.

5. Scalability and Performance Optimization:
Demonstration of the scalability and performance
optimization of BioShieldNet in large-scale
distributed computing environments, capable of

handling high data volumes and complex network
topologies.

6. Interdisciplinary Approach and Practical
Implementation: Integration of concepts from
biology, cybersecurity, and computer science,
providing both theoretical foundations and
practical implementation guidelines.

7. Comprehensive Evaluation and Validation:
Thorough empirical evaluation and validation of
BioShieldNet through empirical studies, assessing
its effectiveness, robustness, and efficiency in
various distributed computing scenarios.

8. Contribution to the Field of Cybersecurity:
Advancement of the field by exploring nature-
inspired approaches, setting a precedent for future
research and development in cybersecurity.

2 Literature Review

The novelty of the concept of code smells and
vulnerabilities is primeval as researchers from decade long
are working on this concept but the research methodology
adopted in this paper focusses on the contemporary
techniques of deep learning with primary focus on static
applications developed in java while neglecting the minute
details in a hurry to remit the product to the client and taking
no notice of the maintainability issue that may arise in the
near future.

Kreimer et. al. in his paper prospected a discernment
hinged on decision tree [18] algorithm in which he diagnosed
two imperfections, viz., long method and large class using
Weka using predefined approaches without highlighting the
precision of the data.

Khomh et. al. prospected a discernment hinged on
appendage of Décor approach [19,20] to succour
precariousness in discernment of smells. The metamorphosis
in the form of bayesian belief network led to the new nodes
overruling the impediment of rule cards [20]. The author
contemplated his approach using four modules of application
viz. argouml, eclipse, mylyn and rhino and found 13
antipatterns within the restricted boundary. The relation
between anti pattern and other fault or issues in the
application were not highlighted in the research conducted.

Hassaine et. al. correlated between human’s
unsusceptible program and discernment [22]. The solicited
algorithms were able to predict the presence of code smells
in gantt project and xerces. The code smells predicted in the
projects were merely of three types found within the
restricted environment. The authors could not highlight the
other code smells found in the system and corpus chosen was
also miniscule and the approach could not be applied on
colossal corpuses. Oliveto et. al. prospected a curve of
interpolation hinged on metrics values on anti-pattern
specimen, gaining the result of higher likeliness of the
affected class [21, 23] manoeuvring the endorsement of the

Elhadj Benkhelifa et al. / Int. J. Comput. Eng. Res. Trends, 11(3), 1-9, 2024

classes and the antipattern. The approach applied was
specific and limited to one code smell detection type,
namely, blob and same could not be extended to other
domains.

Maiga et al. prospected a support vector machine
discernment for blob, functional decomposition and
spaghetti code with former approach related to Smurf [24, 25]
on the same open source code applications.

Palomba et al. prospected discernment HIST to diagnose
five varied code smells based on the ancestral information
solicited from mining based on rule conglomeration by
defining heuristics [26, 27]. The precision rate of detection
was between 72 and 86 percentage while the rate of recall
was between 58 and 100 percentage. Code smell consists of
a huge list and only one type of it was focusses on in the
research conducted.

Fu and Shen et al. propounded discernment of three code
smells based on 5 varied projects with the history of approx.
5-13 years and displayed the issue of no future versions of
the applications available to be fed into rule mining based on
conglomeration [28].

Arcelli Fontana et al. ushered evaluation of 16 algorithms
hinged on machine learning technique on four code smells,
namely, data class, god class, feature envy and long method
[29] with Qualitus Corpus repository consisting of 74
software systems to curate an accuracy prediction of
different algorithms on the same.

Mauna Hadj et al. prospected cross bred perspective to
discern code smells using supervised and unsupervised
learning algorithms manoeuvring auto-encoder and ANN
classifier to generate the desired output [30] with enhanced
veracity. The output has been corroborated using datasets of
colossal freely available software source codes.

Liu H. et al. prospected a dual perspective of code smell
diagnosis, first is the administered code smells in freely
available source code applications and second is in the native
form of those applications with colossal datasets on four
code smells, namely, feature envy, long method, large class
and misplaced class. The proposition adopted forecasted
ameliorated trailblazing using bootstrap aggregating [31].
The observations in the two perspectives were made as
reduction in associating proposed approach in relation to the
native approach of DECOR.

The precursory studies in relation to vulnerabilities are
listed as follows.

Cao et al. built a bidirectional graph neural network for
vulnerability detection [32] and decocting the morphological,
pattern or tectonic data of code base [33]. Wang et al.
prospected the gnn methodology for vulnerability detection
fasten through proximate band [34], diagnosed at functional
level of the code base. Batur et al. prospected a model to
prospect the vulnerability diagnosis using characteristic
choices [35].

Chakrobarty el al. investigated the potentiality of the
software metrics to create non-manual VPM [36] with a
preferably huge measure of reliability by developing a

colossal dataset of php applications based on the web with
approximately 22000 files along with specific characteristic
choices.

Zagane et al. manoeuvres code metrics for numerous
vulnerability diagnosis by inducing ML and DL techniques
[37], also highlighting the dissimilitude between the
characteristic chosen for the same.

Shuban et al. [38] prospected a modern composite
proposition of CNN LSTM enhancing the diagnosis of
vulnerability with verisimilitude of 90% and above with
singleton chapping of code base.

Rebecca L Russel et al. exhibited the potency of the
vulnerability detection based on C/C++ code blocks and
curated it with SATE IV dataset with convolutional neural
network approach[39]. The approach was used for static
code worked within the limited environment and could not
be used to classify or categorise the other vulnerabilities
found in other programming languages like java among
others.

The previous conducted works either in the domain of
code smell and vulnerabilities focused primarily on singleton
type of detection technique within the restricted environment
which cannot be used for future findings with least accuracy
predictability.

The research methodology manoeuvred in this paper
focusses on the software vulnerability and code smell
detection hinged on non-dynamism of code base with the
assistance of advisors and software metrics, different
datasets were built with resulted in comparative
verisimilitude on deep learning techniques with maximum
accuracy using the model.

Based on the previous studies, several gaps and limitations
have been identified related to code smell and vulnerability
detection which are addressed in the comprehensive
methodology and experimental approach, as outlined below:

1. Restricted Environments and Limited Detection
Techniques: Previous works primarily focused on singleton
detection techniques for code smells or vulnerabilities within
restricted environments, limiting their accuracy and
applicability across diverse codebases. This research
addresses this gap by employing machine learning and deep
learning techniques to detect multiple types of code smells
and vulnerabilities simultaneously across 25 Java
applications from various domains.

2. Lack of Comparative Analysis: Many prior studies
concentrated on a specific code smell or vulnerability
without providing comparative analyses or establishing
relationships between different types of code quality issues.
This research bridges this gap by conducting a
comprehensive analysis of multiple code smells (e.g., God
Class, Long Method) and wvulnerabilities (e.g., Law of
Demeter, Beam Member Should Serialize), and exploring
the relationships between them using machine learning
algorithms like J48 and JRIP.

3. Limited Investigation of Deep Learning Techniques: Prior
studies mostly employed rule-based methods or

Elhadj Benkhelifa et al. / Int. J. Comput. Eng. Res. Trends, 11(3), 1-9, 2024

conventional machine learning algorithms, with little
investigation of deep learning techniques for vulnerability
and code smell identification. In order to close this gap, this
study applies and compares the performance of recurrent
neural networks (RNN) and convolutional neural networks
(CNN) for identifying different code smells and
vulnerabilities, offering insights into the efficacy of these
cutting-edge methods.

4. Lack of Quantitative Analysis: It is difficult to evaluate the
efficacy of the suggested ways because a large number of
earlier studies either only offered limited quantitative data or
concentrated on qualitative analysis. This study closes this
gap by performing a thorough quantitative investigation and
providing accuracy numbers for several deep learning and
machine learning approaches across a range of code smells
and vulnerabilities.

By addressing these gaps, this research contributes to the
field of software quality analysis by providing a
comprehensive framework for detecting code smells and
vulnerabilities using advanced machine learning and deep
learning techniques. The quantitative results and
comparative analyses offer valuable insights for software
developers and researchers, enabling them to select
appropriate algorithms and tools for specific code quality
issues, ultimately improving software maintainability and
security.

3 Various Tools Used

The varied tools used for convoying the experimental
approach is listed in fig 6.

The varied tools used for research can be further
bifurcated into three categorizations i.e. advisors, metrics
and deep learning techniques. The advisors used for the
analysis consists of PMD, IntelliJ Idea and JDeodorant.

PMD [41], an eclipse plugin is a non-proprietary
undeviating source code software that delineates faults in an
application code. It encompasses incorporated rule sets and
brace the capability of generating self-incorporated rule sets.
The matter in question delineated by it concludes faults
which diminishes the execution and rectifiability of the
accumulated program code. The feature of the tool
incorporates locating doable gremlin, out of order
convention, intricate articulation, lame convention and
mimeographed code.

IntelliJ Idea[43], prepared in Java programming
language is an IDE curating characteristics like intelligent
consummation, shackles consummation, undeviating
member completion, information flow probing, speech
inoculation and predicting mimeographs in code. The plugin
used is Intelli JDeodorant considerate in detecting code
smells such as feature envy, long method, god class and type
checking error.

Tools

{ Metrics ’ { Deep Learning

SCITOOL
UNDERSTAND

{ Machine Learning }
‘ WEKA }

Advisors

PMD

GOOGLE COLAB

INTELLILJ IDEA

JDEODORANT

i

Fig 6. Tools used in research methodology.

JDeodorant[41], code smell detection as well as
refactoring tool, is an eclipse plugin employs varied
methodology and strategies so as to ascertain code smells
and resolve them using refactoring. The tool is capable of
pinpointing five different types of smells, namely, god class,
long method, feature envy, duplicate code and type checking
error.

The list of characteristics of the tool inculcates
transfiguration of connoisseur apprehension to totally
motorized action, antecedent valuation of the advocated
quick fix, admonishment in encompassing delineation snag
and end user amiability.

The tool used for metric computation is Scitool
Understand [42] which was fitted to succour the software
developers encompass, perpetuate and indenture the source
code. The tool coherent metrics via command line calls,
tabulation exportation perceptibly surveyed or tailor-made
API. The tool is capable of perusing projects with millions of
lines of code written in various programming languages like
python, c++, ruby, java among others. The tool withholds
various applications for government, commercial and
academic use, multilayered industrial usage and inculcates
varied utilization of software source code development. The
tool used for deep learning implementation of algorithms is
google colab, accelerates using cloud services provided by
google, a free jupyter notebook with no premature
essentialities to fulfil with multiple adjuvant libraries.

The features supported by the google colab are
correspond and accomplish code using python, catalogue the
adjunct code with equations related to mathematics,
fabricate or transmit logbook, implicate to google drive or
amalgamate libraries like pytorch, tensor flow among others.
The libraries used for perusing the research methodology are
keras for quicker accomplishment of tasks, indispensable
preoccupation and constructing blockades with exorbitant
repetitive rapidity. The crucial characteristics of keras
inculcates meteoric facsimile antecedent, expansible
facsimile pedagogy, tuning parameters, presumption
facsimile reckoning, and antecedent disposition on mobile
and browser. Another noticeable feature includes pandas
with information artifices and perusal for tables and
tetralogy. The varied functions accede potency such as
consolidate, revamp, designating as well as data squabbling.

Elhadj Benkhelifa et al. / Int. J. Comput. Eng. Res. Trends, 11(3), 1-9, 2024

Numpy, one of the basic conglomerations of the
programming in python. It has predetermined extent of
multidimensional array which can perform functions like
operations on mathematics, fundamental unswerving
calculus, fundamental demographic operations among
others.

Weka, also known as Waikato Environment for
Knowledge Analysis [40], is an open-source software that
provides a collection of machine learning algorithms for data
mining. It includes tools for data pre-processing,
classification, regression, clustering, association rules, and
visualization. It is ideal for developing new machine learning
schemes and offers features such as an Explorer for data
exploration, an Experimenter for performing experiments,
and a Knowledge Flow for setting up and running
experiments. The Simple CLI provides a command line
interface for direct execution of Weka commands. The
Explorer includes filters for discretization, normalization,
resampling, attribute selection, transformation, and
association rule mining. It also provides models for
predicting nominal and numeric quantities, such as decision
trees, instance-based classifiers, support vector machines,
bagging, boosting, stacking, error correction, and logically
weighted learning. The Cluster tool is used to find groups of
similar instances in a dataset, and the Associations algorithm
is used to learn association rules. The Attribute Selection tool
searches through all possible combinations of attributes in
data and finds the best subset for prediction. Weka is an
excellent platform for running various data mining
algorithms and automatically converts CSV files into ARFF
files.

4 Experimental Approach

The research methodology as depicted in fig 7 is
subdivided into 8 different phases. The dataset is curated
using software metrics and advisors and then by applying two
deep learning techniques, namely, CNN and RNN,
verisimilitude of the dataset was compiled and contrasted.

4.1 Corpus Collection

Section | is the initiation phase. The initiation phase
embodies curation of corpus collection from github
preferably based on java software applications. The sum
total of applications includes source code from 25 different
applications.

4.2 Code smell and vulnerability detection

The Section Il of the experimental approach embraces
code smell and vulnerability detection using code smell and
vulnerability confidante respectively. The code smells such
as god class, feature envy, long method and duplicate code
are detected using JDeodorant[14,15], PMDJ[13] and IntelliJ
Idea[15]. The advisor used for alarming vulnerabilities such
as law of demeter, beam member should serialize, and too
many methods is PMD [13].

4.3 Software metrics computation

The Section 111 is the computation of software metrics
using a tool called Scitool Understand [12]. The colossal
enumeration of metrics provided by the tool can further be

bifurcated into complexity metrics, object-oriented metrics
and volume metrics. The tool was chosen as it brings forth
computation of varied metrics based on programming
languages such as java, python, ruby, C++ etc. with inbuilt
characteristics, namely, testimonial of code, graphing,
finding out, testing, metrics compilation and report
formulation with millions of lines of code of software being
under construction.

4.4 Formalizing Dataset

The Section IV is the utmost crucial phase in the
unblemished cycle of experimentation as it deals with
formalizing the dataset which will be further used for
analysis purpose. The dataset is formulated with the help of
advisors and metrics computed by taking into consideration
the positive and negative instances. The dataset has been
curated using stratified sampling approach [16] which is a
process of dissecting the projection of the populace into
congruent subspecies preceding the sampling procedure,
then labelling based on positive or negative instances.

{ Corpus Collection]

/\.

{ Code Smell Detection] [

— ——

{ Software Metrics Computation J

l

{ Formalising Dataset]

l

{ Dataset Preprocessing]

l

Vulnerability Detection }

Normalisation of Data]

l

{Biiurcation of data into testing and training modules

l

Applying machine learning and deep learning
algorithms

Fig 7 Research Methodology
4.5 Data Pre-processing

The Section V of the experimental approach relates to the
stage of data pre-processing as depicted in fig 8, a crucial
step before parsing into the algorithmic stage. Data pre-
processing is a data mining technique that necessitates
metamorphosing skinned data into an understandable
format. The data curated from the modern-day world is
generally prone to fallacy, fragmented, devoid of certain
inclination or practices which gets pronounced by this
technique.

Fig 8 Steps in data preprocessing

The fig 8 mentions the steps taken to prepare dataset for
analysis and verisimilitude prediction using google colab and

Elhadj Benkhelifa et al. / Int. J. Comput. Eng. Res. Trends, 11(3), 1-9, 2024

weka by implementing methodologies such as CNN and
RNN and many machine learning algorithms like J48, JRip,
Naive Bayes etc. and a comparison has been achieved hinged
upon them. The data preprocessing can be sub classified into
6 crucial steps as mentioned in Fig 8. The process initializes
with data cleaning, a process of pigeonholing the mislaid
data or eradicating rows with mislaid data, flattening the
clamorous data or straightening out the data at odds, the
chances of getting it either through human fault or doubling
of data. Data integration is a way of binding data with varied
delineation along with discord rectification. Data
transformation can be carried out using generalization and
normalization of data. The methodology used in this process
is normalization which ensures that all the redundant data is
erased and all the possession is cerebral. Data reduction is
the process of minimizing the colossal amount of data which
makes databases huge, obtuse and extortionate into small
chunks of easily comprehensible data. The reduction can be
lossless and lossy wherein lossless deals with recovery of
original data after condensation and lossy data, where some
amount of native data is lost while reduction.

Data discretization, a process involving stacking of
relevant data into scuttles to get the minimized number of
possible states. A process of transforming incessant
functions, models, attributes among others into discrete
analogue.Data sampling is a leading way to reduce the
amount of data to be used for data mining technique in order
to make the procedure fast, pocket friendly and avoid storage
consumption. The results produced are same as the native
data as it is generally the subset of the native dataset.

Method argument could be final:
The algorithm JRIP produced the best results when
compared with 75.86% shown in fig 15.

method argument could be final

20 75.86 75.6 7384
70
60 57.19
50
40
30
20
10
0
& o o
¥ S &Q’@‘\ @((O@ & .00,\'50 >
L Qbo Q,O"\
® Q

Fig 15: Algorithm comparison for method argument could
be final

Local variable could be final:
The algorithm JRIP produced the best results when
compared with 88.07% shown in fig 16.

local variable could be final

100 89.82 86 8807 90 35
90 76.49
80 66.67
70
60
50
40
30
20
10
0
O &
A \Q\ Q)fs\ QOKQ’ "’@ '\'80 /\,Q:‘
R4
& Qa>°‘° eo‘}oo
® Q

Fig 16: Algorithm comparison for local variable could be
final

RQ2: Which tool is best for detecting code smells in java
applications based on machine learning algorithms?

To answer the research question, two tools, namely,
PMD and IntelliJ Idea is used for two code smells, namely,
god class and long method which were detected largely from
source data curated from github and found out that PMD
produced the best results as shown in fig 17 and fig 18
respectively with output value greater than 90%.

God Class
120
100 814 96.05 95.37 97.22
80
60
40
20
0
Jrip Random Naive Bayes
Forest

B Code Smell detected using PMD

B Code Smell detected using Intellij Idea

Fig 17: God Class result for two different software

Elhadj Benkhelifa et al. / Int. J. Comput. Eng. Res. Trends, 11(3), 1-9, 2024

Long Method

120
99 99.28 98
100 90 . 93.5
: 2.25 0.25
80
60
40
20
0
J48 Jrip Random Naive Bayes
Forest

B Code Smell detected using PMD

B Code Smell detected using Intellij Idea

Fig 18: Long Method result for two different software

RQ3: Is there exists a similarity between code smell and
vulnerability?

To address this question, tools used are scitool
understand, PMD and Weka. There exists a relationship
between code smell and vulnerability. The violation pattern
shown by both corresponds with one another. Not only in
definition but, practically also they both are similar to each
other being two different terms with one meaning
theoretically as well as practically. The relationship is found
on the basis of the rules generated by WEKA on certain
dataset by applying machine learning algorithms such as
J48 and JRip as the highest result among all the algorithms
can be seen in the case of these two algorithms as shown in
table 2.

Table 2: Relationship between code smell and vulnerability

Code smell Vulnerability | Algorithm | Rule matched
God class Too many | JRIP CountDeclMethod>=17

methods
Cyclomatic Npath J48 SumCyclomaticStrict>8
complexity complexity

CountLine>=80,

Long Excessive JRIP SumCyclomatic >=11
method method length

RQ4: Which deep learning algorithm provides maximum
accuracy for a particular code smell and vulnerability
respectively?

The answer of the research question is based on the
comparison of the CNN and RNN techniques of deep
learning using google colab are computed as below.

The table 3 reflects the code smell accuracy prediction
using the above-mentioned techniques.

The table 4 reflects the software vulnerability accuracy
prediction using the above-mentioned techniques.

Table 3: Comparison of CNN and RNN techniques for code smells

Code Smell Accuracy prediction| Accuracy
using CNN prediction using
RNN
God Class 90.08% 86.78%
Long 89.18% 81.08%
Method
Table 4: Comparison of CNN and RNN techniques for vulnerabilities
Vulnerability Accuracy prediction| Accuracy
using CNN prediction using
RNN
Law of Demeter | 96.77% 91.39%
Beam member | 85.50% 88.40%
should serialize
Too many | 71.42% 94.28%
method
Cyclomatic 92.64% 80.82%
Complexity

Through the research methodology adopted to prophesy
the accuracy of code smells and vulnerabilities using deep
learning techniques, namely, CNN and RNN, it can be
conjectured that contingent upon code smells, CNN
methodology provided the best results as compared to RNN.

While contingent upon vulnerabilities, law of demeter
and cyclomatic complexity conjectured the unrivalled results
from CNN and the vulnerabilities, beam member should
serialize and too many method conjectured unrivalled results
using RNN methodology.

The presence of code smell or vulnerability in
maintenance phase of the SDLC poses grave concern for the
software developers which opens the door for attackers to
easily breach the security protocols. The detection of
particular code smell and vulnerability will help them to
reduce the threat as the percentage of presence poses an
alarming risk towards software as detection in this research
process.

6 Conclusion

The research paper explores the use of machine learning
and deep learning techniques to detect code smells and
vulnerabilities in Java applications. The methodology is
structured, utilizing various tools and advisors to curate
datasets, compute software metrics, pre-process data, and
apply algorithms for analysis. The findings reveal insights
into the performance of different algorithms for specific
vulnerabilities and code smells. Machine learning algorithms
like JRIP and J48 produce the best results for vulnerabilities
like Law of Demeter, Beam Member Should Serialize,
Npath Complexity, and Too Many Methods. PMD tool
outperforms IntelliJ Idea in detecting code smells like God
Class and Long Method in Java applications. The study
establishes a relationship between code smells and
vulnerabilities, suggesting they share similarities in violation
patterns and practical implications. This aligns with the

Elhadj Benkhelifa et al. / Int. J. Comput. Eng. Res. Trends, 11(3), 1-9, 2024

theoretical understanding that both code smells and
vulnerabilities can negatively impact software quality and
maintainability. The study compares the accuracy of
Convolutional Neural Networks (CNN) and Recurrent
Neural Networks (RNN) for specific code smells and
vulnerabilities. CNN outperforms RNN for certain code
smells, while RNN provides better accuracy for some
vulnerabilities. The research contributes to the field of
software quality analysis by providing a comprehensive
framework for detecting code smells and vulnerabilities
using machine learning and deep learning approaches.
Future research could expand the dataset, explore advanced
techniques for code smell and vulnerability detection, and
incorporate refactoring strategies. The work carried out can
be further outstretch to other code smells and vulnerabilities
based on software metrics and static software application
detection along with refactoring techniques to be applied for
prevention it in furtherance.

Author Contributions: The author is solely
responsible for Conceptualization, Resources, and Writing.

Data availability: Data available upon request.
Conflict of Interest: There is no conflict of Interest.
Funding: The research received no external funding.
Similarity checked: Yes.

References:

1. Alam, S., Saini, J. R., & Kapoor, R. (2018). Bio-
inspired algorithms in cloud computing: Survey
and open research challenges. Journal of Cloud
Computing: Advances, Systems and Applications,
7(1), 1-22. https://doi.org/10.1186/s13677-018-
0117-1

2. Beigh, B. M., & Peer, M. A. (2019). A review of
bio-inspired routing protocols for wireless sensor
networks. Journal of Network and Computer
Applications, 99, 43-58.
https://doi.org/10.1016/j.jnca.2017.11.002

3. Blasiak, A., Mazur, M., & Ortyl, M. (2020). Bio-
inspired models of secure distributed systems.
Journal of Theoretical Biology, 507, 110455.
https://doi.org/10.1016/j.jtbi.2020.110455

4. Dasgupta, D., Frazier, J., & Bowers, C. P. (2013).
Bio-inspired cybersecurity for smart grid
communications. IEEE Communications
Magazine, SI(1), 70-78.
https://doi.org/10.1109/MCOM.2013.6476870

5. Dasgupta, D., & Majumdar, S. (2015). Anomaly
detection in cybersecurity: From machine learning
to biological inspired techniques. Journal of
Critical Infrastructure Protection, 10, 1-11.

https://doi.org/10.1016/].ijcip.2015.07.001

6. Dorigo, M., & Stiitzle, T. (2019). Ant colony
optimization: Overview and recent advances.
Handbook of Metaheuristics, 311-351.
https://doi.org/10.1007/978-1-4939-8753-1 11

7.

10.

11.

12.

13.

14.

15.

16.

17.

Gu, Y., Sun, D., & Wu, C. (2021). A survey of bio-
inspired computing in cyber-physical systems.
IEEE Access, 9, 4567-4583.
https://doi.org/10.1109/ACCESS.2020.3047943

Li, H., Wang, H., & Lu, W. (2020). Bio-inspired
neural networks for cybersecurity. [EEE
Transactions on Neural Networks and Learning
Systems, 31(8), 2944-2955.
https://doi.org/10.1109/TNNLS.2019.2949041

Liu, C, & Zhang, S. (2020). Bio-inspired

cryptographic techniques for secure
communication. Journal of Cryptographic
Engineering, 10(4), 453-468.

https://doi.org/10.1007/s13389-020-00220-1

Niyaz, Q., Sun, W., & Javaid, A. Y. (2016). A deep
learning based DDoS detection system in
software-defined networking (SDN). EAJ
Endorsed Transactions on Security and Safety,
3(9), e4d. https://doi.org/10.4108/cai.28-12-
2017.153515

Parpinelli, R. S., & Lopes, H. S. (2011). New
inspirations in swarm intelligence: A survey.
International Journal of Bio-Inspired
Computation, 3(1), 1-16.
https://doi.org/10.1504/1JBIC.2011.038555

Pradhan, S., Panda, M., & Pati, B. (2017). Bio-
inspired computational algorithms for information
security: A review. Journal of Information Security
and Applications, 35, 44-54,
https://doi.org/10.1016/].jisa.2017.06.003

Rao, S. S., & Srinivas, K. (2020). Intrusion
detection in distributed computing environments:
A bio-inspired approach. Journal of Network and
Computer Applications, 163, 102672.
https://doi.org/10.1016/j.jnca.2020.102672

Saha, S., Bhattacharyya, D., & Kim, T. (2021).
Bio-inspired encryption techniques for secure
distributed systems. [Infernational Journal of
Information Management, 58, 102230.
https://doi.org/10.1016/j.ijinfomgt.2020.102230

Saleem, Y., & Rehman, S. U. (2014). Bio-inspired
routing protocols for wireless sensor networks: A
review and future challenges. International
Journal of Distributed Sensor Networks, 10(10),
873410. https://doi.org/10.1155/2014/873410

Schimit, P. H., & Filho, M. A. G. (2015). Bio-
inspired algorithms applied to network security: A
survey. Applied Soft Computing, 33, 15-28.
https://doi.org/10.1016/j.as0¢.2015.04.054

Sharma, M., & Bansal, R. K. (2015). Anomaly
detection in network traffic using bio-inspired
algorithm. [International Journal of Computer
Applications, 127(11), 9-12.
https://doi.org/10.5120/ijca2015906511

Elhadj Benkhelifa et al. / Int. J. Comput. Eng. Res. Trends, 11(3), 1-9, 2024

18. Singh, A., & Dhawan, P. (2017). Bio-inspired
optimization techniques in distributed computing:
A survey. Journal of Network and Computer
Applications, 97, 68-87.
https://doi.org/10.1016/j.jnca.2017.08.001

19. Verma, S., & Kumar, E. (2016). Bio-inspired
security mechanisms for cloud computing
environments. Journal of Information Security,
7(2), 113-123.
https://doi.org/10.4236/jis.2016.72008

20. Wang, Y., & Wang, X. (2018). Biologically
inspired cybersecurity solutions: A survey. /EEE
Access, 0, 67493-67510.
https://doi.org/10.1109/ACCESS.2018.2879374

