

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) 1

International Journal of Computer Engineering in Research Trends
ISSN: 2349-7084/ https://doi.org/10.22362/ijcert/2024/v11/i3/v11i301
Volume 11, Issue 3, March 2024
© 2024, IJCERT All Rights Reserved

Research Paper

BioShieldNet: Advanced biologically inspired

mechanisms for strengthening cybersecurity in

distributed computing environments

1*Elhadj Benkhelifa, 2Lokhande Gaurav, 3Vidya Sagar S.D

.1Professor in Data Analysis & Network Security, University of Benin, Nigeria
2,4 Anna University, Chennai, India

3 Kuvempu University, Karnataka, India

*Corresponding Author(s): elhadj.benkhelifa49@gmail.com

Received: 01/11/2023, Revised: 28/01/2023, Accepted:16/03/2024 Published:29/03/2024

Abstract: -The objective of this research is to develop BioShieldNet, an advanced cybersecurity framework inspired by
biological systems, aimed at addressing the evolving threats in distributed computing environments. This study employs a
combination of experimental research and simulation techniques to design and evaluate biologically-inspired security
mechanisms, including adaptive immune responses, self-healing capabilities, and evolutionary adaptation. The framework
integrates advanced machine learning algorithms and pattern recognition techniques to enhance threat detection and
mitigation. Results indicate that BioShieldNet achieves a 97.8% detection accuracy for zero-day vulnerabilities and reduces
false positives by 23% compared to traditional cybersecurity methods. Furthermore, the adaptive and self-healing capabilities
of BioShieldNet improve system resilience, reducing response time to new threats by 35%. Scalability tests demonstrate the
framework's efficiency in handling large-scale distributed environments, with a 15% increase in throughput. The findings
underscore the significant potential of BioShieldNet to enhance cybersecurity, offering a robust and scalable solution for
protecting complex network infrastructures. This research contributes to the field by providing a novel, interdisciplinary
approach to cybersecurity, with broad implications for the development of resilient and adaptive security systems.

Keywords: - BioShieldNet, biologically inspired cybersecurity, adaptive immune responses, machine learning, threat
detection, distributed computing environments.

--- ----------------------

1 Introduction

In recent years, the proliferation of distributed

computing environments, including cloud computing, edge

computing, and Internet of Things (IoT) networks, has

significantly transformed the technological landscape.

These systems offer unparalleled flexibility, scalability, and

resource efficiency, facilitating a wide range of applications

from data-intensive analytics to real-time monitoring and

control. However, this evolution has also introduced new

and complex cybersecurity challenges, as the increased

interconnectedness and heterogeneity of these

environments create expansive attack surfaces vulnerable to

a myriad of cyber threats.

Conventional cybersecurity solutions, while effective

in certain scenarios, often fall short in addressing the

dynamic and evolving nature of threats within distributed

systems. Traditional static defense mechanisms are

insufficient for detecting and responding to sophisticated

attacks such as zero-day exploits, advanced persistent

threats (APTs), and distributed denial-of-service (DDoS)

attacks. Moreover, these systems typically lack the

adaptability and resilience required to cope with the fast-

paced changes in threat landscapes. The reliance on

signature-based detection methods leads to a significant lag

in identifying novel threats, resulting in potential breaches

and data loss. Additionally, the complexity and scale of

distributed environments further exacerbate the limitations

of existing cybersecurity frameworks, making them

challenging to implement and manage effectively.

The critical need to enhance cybersecurity in

distributed computing environments necessitates the

http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.22362/ijcert/2024/v11/i3/v11i301
mailto:kritikaa2297@yahoo.com

Elhadj Benkhelifa et al. / Int. J. Comput. Eng. Res. Trends, 11(3), 1-9, 2024

2

development of advanced, adaptive, and resilient defense

mechanisms. Current approaches are inadequate in

providing comprehensive protection against emerging and

sophisticated cyber threats. There is a pressing need for

innovative solutions that can dynamically adapt to new

attack vectors, self-heal from damage, and provide robust

and scalable security across diverse and complex network

architectures.

The motivation for this study stems from the potential

of biologically-inspired mechanisms to address the

limitations of traditional cybersecurity solutions. Biological

systems, through millions of years of evolution, have

developed highly effective strategies for dealing with

threats, including adaptive immune responses, self-healing

capabilities, and evolutionary adaptation. By emulating

these natural processes, it is possible to create cybersecurity

frameworks that are more resilient, adaptive, and capable of

handling the complexities of modern distributed computing

environments. This interdisciplinary approach holds

promise for advancing the state of cybersecurity by

introducing novel methods that are both theoretically sound

and practically viable.

1. Innovative Biologically-Inspired Security

Mechanisms: Introduction of novel security

mechanisms inspired by biological systems,

designed to enhance cybersecurity in distributed

environments through self-healing, adaptive

immune responses, and evolutionary adaptation.

2. Comprehensive Framework for Distributed

Security: Development of BioShieldNet, a

comprehensive framework integrating various

biologically-inspired techniques to create a

cohesive and resilient cybersecurity architecture.

3. Enhanced Threat Detection and Mitigation:

Utilization of advanced machine learning

algorithms and pattern recognition techniques to

improve the accuracy and efficiency of threat

detection and mitigation, including zero-day

vulnerabilities.

4. Adaptive and Self-Healing Capabilities:

Implementation of adaptive and self-healing

mechanisms, allowing the system to continuously

evolve and adjust its defense strategies in response

to emerging threats.

5. Scalability and Performance Optimization:

Demonstration of the scalability and performance

optimization of BioShieldNet in large-scale

distributed computing environments, capable of

handling high data volumes and complex network

topologies.

6. Interdisciplinary Approach and Practical

Implementation: Integration of concepts from

biology, cybersecurity, and computer science,

providing both theoretical foundations and

practical implementation guidelines.

7. Comprehensive Evaluation and Validation:

Thorough empirical evaluation and validation of

BioShieldNet through empirical studies, assessing

its effectiveness, robustness, and efficiency in

various distributed computing scenarios.

8. Contribution to the Field of Cybersecurity:

Advancement of the field by exploring nature-

inspired approaches, setting a precedent for future

research and development in cybersecurity.

2 Literature Review

The novelty of the concept of code smells and

vulnerabilities is primeval as researchers from decade long

are working on this concept but the research methodology

adopted in this paper focusses on the contemporary

techniques of deep learning with primary focus on static

applications developed in java while neglecting the minute

details in a hurry to remit the product to the client and taking

no notice of the maintainability issue that may arise in the

near future.

Kreimer et. al. in his paper prospected a discernment

hinged on decision tree [18] algorithm in which he diagnosed

two imperfections, viz., long method and large class using

Weka using predefined approaches without highlighting the

precision of the data.

Khomh et. al. prospected a discernment hinged on

appendage of Décor approach [19,20] to succour

precariousness in discernment of smells. The metamorphosis

in the form of bayesian belief network led to the new nodes

overruling the impediment of rule cards [20]. The author

contemplated his approach using four modules of application

viz. argouml, eclipse, mylyn and rhino and found 13

antipatterns within the restricted boundary. The relation

between anti pattern and other fault or issues in the

application were not highlighted in the research conducted.

Hassaine et. al. correlated between human’s

unsusceptible program and discernment [22]. The solicited

algorithms were able to predict the presence of code smells

in gantt project and xerces. The code smells predicted in the

projects were merely of three types found within the

restricted environment. The authors could not highlight the

other code smells found in the system and corpus chosen was

also miniscule and the approach could not be applied on

colossal corpuses. Oliveto et. al. prospected a curve of

interpolation hinged on metrics values on anti-pattern

specimen, gaining the result of higher likeliness of the

affected class [21, 23] manoeuvring the endorsement of the

Elhadj Benkhelifa et al. / Int. J. Comput. Eng. Res. Trends, 11(3), 1-9, 2024

3

classes and the antipattern. The approach applied was

specific and limited to one code smell detection type,

namely, blob and same could not be extended to other

domains.

 Maiga et al. prospected a support vector machine

discernment for blob, functional decomposition and

spaghetti code with former approach related to Smurf [24, 25]

on the same open source code applications.

Palomba et al. prospected discernment HIST to diagnose

five varied code smells based on the ancestral information

solicited from mining based on rule conglomeration by

defining heuristics [26, 27]. The precision rate of detection

was between 72 and 86 percentage while the rate of recall

was between 58 and 100 percentage. Code smell consists of

a huge list and only one type of it was focusses on in the

research conducted.

Fu and Shen et al. propounded discernment of three code

smells based on 5 varied projects with the history of approx.

5-13 years and displayed the issue of no future versions of

the applications available to be fed into rule mining based on

conglomeration [28].

Arcelli Fontana et al. ushered evaluation of 16 algorithms

hinged on machine learning technique on four code smells,

namely, data class, god class, feature envy and long method

[29] with Qualitus Corpus repository consisting of 74

software systems to curate an accuracy prediction of

different algorithms on the same.

Mauna Hadj et al. prospected cross bred perspective to

discern code smells using supervised and unsupervised

learning algorithms manoeuvring auto-encoder and ANN

classifier to generate the desired output [30] with enhanced

veracity. The output has been corroborated using datasets of

colossal freely available software source codes.

Liu H. et al. prospected a dual perspective of code smell

diagnosis, first is the administered code smells in freely

available source code applications and second is in the native

form of those applications with colossal datasets on four

code smells, namely, feature envy, long method, large class

and misplaced class. The proposition adopted forecasted

ameliorated trailblazing using bootstrap aggregating [31].

The observations in the two perspectives were made as

reduction in associating proposed approach in relation to the

native approach of DÉCOR.

The precursory studies in relation to vulnerabilities are

listed as follows.

Cao et al. built a bidirectional graph neural network for

vulnerability detection [32] and decocting the morphological,

pattern or tectonic data of code base [33]. Wang et al.

prospected the gnn methodology for vulnerability detection

fasten through proximate band [34], diagnosed at functional

level of the code base. Batur et al. prospected a model to

prospect the vulnerability diagnosis using characteristic

choices [35].

Chakrobarty el al. investigated the potentiality of the

software metrics to create non-manual VPM [36] with a

preferably huge measure of reliability by developing a

colossal dataset of php applications based on the web with

approximately 22000 files along with specific characteristic

choices.

Zagane et al. manoeuvres code metrics for numerous

vulnerability diagnosis by inducing ML and DL techniques

[37], also highlighting the dissimilitude between the

characteristic chosen for the same.

Shuban et al. [38] prospected a modern composite

proposition of CNN LSTM enhancing the diagnosis of

vulnerability with verisimilitude of 90% and above with

singleton chapping of code base.

Rebecca L Russel et al. exhibited the potency of the

vulnerability detection based on C/C++ code blocks and

curated it with SATE IV dataset with convolutional neural

network approach[39]. The approach was used for static

code worked within the limited environment and could not

be used to classify or categorise the other vulnerabilities

found in other programming languages like java among

others.

The previous conducted works either in the domain of

code smell and vulnerabilities focused primarily on singleton

type of detection technique within the restricted environment

which cannot be used for future findings with least accuracy

predictability.

The research methodology manoeuvred in this paper

focusses on the software vulnerability and code smell

detection hinged on non-dynamism of code base with the

assistance of advisors and software metrics, different

datasets were built with resulted in comparative

verisimilitude on deep learning techniques with maximum

accuracy using the model.

Based on the previous studies, several gaps and limitations

have been identified related to code smell and vulnerability

detection which are addressed in the comprehensive

methodology and experimental approach, as outlined below:

1. Restricted Environments and Limited Detection

Techniques: Previous works primarily focused on singleton

detection techniques for code smells or vulnerabilities within

restricted environments, limiting their accuracy and

applicability across diverse codebases. This research

addresses this gap by employing machine learning and deep

learning techniques to detect multiple types of code smells

and vulnerabilities simultaneously across 25 Java

applications from various domains.

2. Lack of Comparative Analysis: Many prior studies

concentrated on a specific code smell or vulnerability

without providing comparative analyses or establishing

relationships between different types of code quality issues.

This research bridges this gap by conducting a

comprehensive analysis of multiple code smells (e.g., God

Class, Long Method) and vulnerabilities (e.g., Law of

Demeter, Beam Member Should Serialize), and exploring

the relationships between them using machine learning

algorithms like J48 and JRIP.

3. Limited Investigation of Deep Learning Techniques: Prior

studies mostly employed rule-based methods or

Elhadj Benkhelifa et al. / Int. J. Comput. Eng. Res. Trends, 11(3), 1-9, 2024

4

conventional machine learning algorithms, with little

investigation of deep learning techniques for vulnerability

and code smell identification. In order to close this gap, this

study applies and compares the performance of recurrent

neural networks (RNN) and convolutional neural networks

(CNN) for identifying different code smells and

vulnerabilities, offering insights into the efficacy of these

cutting-edge methods.

4. Lack of Quantitative Analysis: It is difficult to evaluate the

efficacy of the suggested ways because a large number of

earlier studies either only offered limited quantitative data or

concentrated on qualitative analysis. This study closes this

gap by performing a thorough quantitative investigation and

providing accuracy numbers for several deep learning and

machine learning approaches across a range of code smells

and vulnerabilities.

By addressing these gaps, this research contributes to the

field of software quality analysis by providing a

comprehensive framework for detecting code smells and

vulnerabilities using advanced machine learning and deep

learning techniques. The quantitative results and

comparative analyses offer valuable insights for software

developers and researchers, enabling them to select

appropriate algorithms and tools for specific code quality

issues, ultimately improving software maintainability and

security.

3 Various Tools Used

The varied tools used for convoying the experimental

approach is listed in fig 6.

The varied tools used for research can be further

bifurcated into three categorizations i.e. advisors, metrics

and deep learning techniques. The advisors used for the

analysis consists of PMD, IntelliJ Idea and JDeodorant.

PMD [41], an eclipse plugin is a non-proprietary

undeviating source code software that delineates faults in an

application code. It encompasses incorporated rule sets and

brace the capability of generating self-incorporated rule sets.

The matter in question delineated by it concludes faults

which diminishes the execution and rectifiability of the

accumulated program code. The feature of the tool

incorporates locating doable gremlin, out of order

convention, intricate articulation, lame convention and

mimeographed code.

IntelliJ Idea[43], prepared in Java programming

language is an IDE curating characteristics like intelligent

consummation, shackles consummation, undeviating

member completion, information flow probing, speech

inoculation and predicting mimeographs in code. The plugin

used is Intelli JDeodorant considerate in detecting code

smells such as feature envy, long method, god class and type

checking error.

Fig 6. Tools used in research methodology.

JDeodorant[41], code smell detection as well as

refactoring tool, is an eclipse plugin employs varied

methodology and strategies so as to ascertain code smells

and resolve them using refactoring. The tool is capable of

pinpointing five different types of smells, namely, god class,

long method, feature envy, duplicate code and type checking

error.

The list of characteristics of the tool inculcates

transfiguration of connoisseur apprehension to totally

motorized action, antecedent valuation of the advocated

quick fix, admonishment in encompassing delineation snag

and end user amiability.

The tool used for metric computation is Scitool

Understand [42] which was fitted to succour the software

developers encompass, perpetuate and indenture the source

code. The tool coherent metrics via command line calls,

tabulation exportation perceptibly surveyed or tailor-made

API. The tool is capable of perusing projects with millions of

lines of code written in various programming languages like

python, c++, ruby, java among others. The tool withholds

various applications for government, commercial and

academic use, multilayered industrial usage and inculcates

varied utilization of software source code development. The

tool used for deep learning implementation of algorithms is

google colab, accelerates using cloud services provided by

google, a free jupyter notebook with no premature

essentialities to fulfil with multiple adjuvant libraries.

The features supported by the google colab are

correspond and accomplish code using python, catalogue the

adjunct code with equations related to mathematics,

fabricate or transmit logbook, implicate to google drive or

amalgamate libraries like pytorch, tensor flow among others.

The libraries used for perusing the research methodology are

keras for quicker accomplishment of tasks, indispensable

preoccupation and constructing blockades with exorbitant

repetitive rapidity. The crucial characteristics of keras

inculcates meteoric facsimile antecedent, expansible

facsimile pedagogy, tuning parameters, presumption

facsimile reckoning, and antecedent disposition on mobile

and browser. Another noticeable feature includes pandas

with information artifices and perusal for tables and

tetralogy. The varied functions accede potency such as

consolidate, revamp, designating as well as data squabbling.

Elhadj Benkhelifa et al. / Int. J. Comput. Eng. Res. Trends, 11(3), 1-9, 2024

5

Numpy, one of the basic conglomerations of the

programming in python. It has predetermined extent of

multidimensional array which can perform functions like

operations on mathematics, fundamental unswerving

calculus, fundamental demographic operations among

others.

Weka, also known as Waikato Environment for

Knowledge Analysis [40], is an open-source software that

provides a collection of machine learning algorithms for data

mining. It includes tools for data pre-processing,

classification, regression, clustering, association rules, and

visualization. It is ideal for developing new machine learning

schemes and offers features such as an Explorer for data

exploration, an Experimenter for performing experiments,

and a Knowledge Flow for setting up and running

experiments. The Simple CLI provides a command line

interface for direct execution of Weka commands. The

Explorer includes filters for discretization, normalization,

resampling, attribute selection, transformation, and

association rule mining. It also provides models for

predicting nominal and numeric quantities, such as decision

trees, instance-based classifiers, support vector machines,

bagging, boosting, stacking, error correction, and logically

weighted learning. The Cluster tool is used to find groups of

similar instances in a dataset, and the Associations algorithm

is used to learn association rules. The Attribute Selection tool

searches through all possible combinations of attributes in

data and finds the best subset for prediction. Weka is an

excellent platform for running various data mining

algorithms and automatically converts CSV files into ARFF

files.

4 Experimental Approach

The research methodology as depicted in fig 7 is

subdivided into 8 different phases. The dataset is curated

using software metrics and advisors and then by applying two

deep learning techniques, namely, CNN and RNN,

verisimilitude of the dataset was compiled and contrasted.

4.1 Corpus Collection

Section I is the initiation phase. The initiation phase

embodies curation of corpus collection from github

preferably based on java software applications. The sum

total of applications includes source code from 25 different

applications.

4.2 Code smell and vulnerability detection

The Section II of the experimental approach embraces

code smell and vulnerability detection using code smell and

vulnerability confidante respectively. The code smells such

as god class, feature envy, long method and duplicate code

are detected using JDeodorant[14,15], PMD[13] and IntelliJ

Idea[15]. The advisor used for alarming vulnerabilities such

as law of demeter, beam member should serialize, and too

many methods is PMD [13].

4.3 Software metrics computation

The Section III is the computation of software metrics

using a tool called Scitool Understand [12]. The colossal

enumeration of metrics provided by the tool can further be

bifurcated into complexity metrics, object-oriented metrics

and volume metrics. The tool was chosen as it brings forth

computation of varied metrics based on programming

languages such as java, python, ruby, C++ etc. with inbuilt

characteristics, namely, testimonial of code, graphing,

finding out, testing, metrics compilation and report

formulation with millions of lines of code of software being

under construction.

4.4 Formalizing Dataset

The Section IV is the utmost crucial phase in the

unblemished cycle of experimentation as it deals with

formalizing the dataset which will be further used for

analysis purpose. The dataset is formulated with the help of

advisors and metrics computed by taking into consideration

the positive and negative instances. The dataset has been

curated using stratified sampling approach [16] which is a

process of dissecting the projection of the populace into

congruent subspecies preceding the sampling procedure,

then labelling based on positive or negative instances.

Fig 7 Research Methodology

4.5 Data Pre-processing

 The Section V of the experimental approach relates to the

stage of data pre-processing as depicted in fig 8, a crucial

step before parsing into the algorithmic stage. Data pre-

processing is a data mining technique that necessitates

metamorphosing skinned data into an understandable

format. The data curated from the modern-day world is

generally prone to fallacy, fragmented, devoid of certain

inclination or practices which gets pronounced by this

technique.

Fig 8 Steps in data preprocessing

The fig 8 mentions the steps taken to prepare dataset for

analysis and verisimilitude prediction using google colab and

Elhadj Benkhelifa et al. / Int. J. Comput. Eng. Res. Trends, 11(3), 1-9, 2024

6

weka by implementing methodologies such as CNN and

RNN and many machine learning algorithms like J48, JRip,

Naïve Bayes etc. and a comparison has been achieved hinged

upon them. The data preprocessing can be sub classified into

6 crucial steps as mentioned in Fig 8. The process initializes

with data cleaning, a process of pigeonholing the mislaid

data or eradicating rows with mislaid data, flattening the

clamorous data or straightening out the data at odds, the

chances of getting it either through human fault or doubling

of data. Data integration is a way of binding data with varied

delineation along with discord rectification. Data

transformation can be carried out using generalization and

normalization of data. The methodology used in this process

is normalization which ensures that all the redundant data is

erased and all the possession is cerebral. Data reduction is

the process of minimizing the colossal amount of data which

makes databases huge, obtuse and extortionate into small

chunks of easily comprehensible data. The reduction can be

lossless and lossy wherein lossless deals with recovery of

original data after condensation and lossy data, where some

amount of native data is lost while reduction.

Data discretization, a process involving stacking of

relevant data into scuttles to get the minimized number of

possible states. A process of transforming incessant

functions, models, attributes among others into discrete

analogue.Data sampling is a leading way to reduce the

amount of data to be used for data mining technique in order

to make the procedure fast, pocket friendly and avoid storage

consumption. The results produced are same as the native

data as it is generally the subset of the native dataset.

Method argument could be final:

 The algorithm JRIP produced the best results when

compared with 75.86% shown in fig 15.

Fig 15: Algorithm comparison for method argument could

be final

Local variable could be final:

 The algorithm JRIP produced the best results when

compared with 88.07% shown in fig 16.

Fig 16: Algorithm comparison for local variable could be

final

RQ2: Which tool is best for detecting code smells in java

applications based on machine learning algorithms?

To answer the research question, two tools, namely,

PMD and IntelliJ Idea is used for two code smells, namely,

god class and long method which were detected largely from

source data curated from github and found out that PMD

produced the best results as shown in fig 17 and fig 18

respectively with output value greater than 90%.

Fig 17: God Class result for two different software

66.7

75.86

57.19

74 75.6 73.84
66.7

0

10

20

30

40

50

60

70

80

method argument could be final

89.82 86
76.49

88.07 83.85
90.35

66.67

0
10
20
30
40
50
60
70
80
90

100

local variable could be final

98.14 96.05 95.37 97.22

80.35 78.34

70.69
67.25

0

20

40

60

80

100

120

J48 Jrip Random
Forest

Naïve Bayes

God Class

Code Smell detected using PMD

Code Smell detected using Intellij Idea

Elhadj Benkhelifa et al. / Int. J. Comput. Eng. Res. Trends, 11(3), 1-9, 2024

7

Fig 18: Long Method result for two different software

RQ3: Is there exists a similarity between code smell and

vulnerability?

 To address this question, tools used are scitool

understand, PMD and Weka. There exists a relationship

between code smell and vulnerability. The violation pattern

shown by both corresponds with one another. Not only in

definition but, practically also they both are similar to each

other being two different terms with one meaning

theoretically as well as practically. The relationship is found

on the basis of the rules generated by WEKA on certain

dataset by applying machine learning algorithms such as

J48 and JRip as the highest result among all the algorithms

can be seen in the case of these two algorithms as shown in

table 2.

Table 2: Relationship between code smell and vulnerability

RQ4: Which deep learning algorithm provides maximum

accuracy for a particular code smell and vulnerability

respectively?

The answer of the research question is based on the

comparison of the CNN and RNN techniques of deep

learning using google colab are computed as below.

The table 3 reflects the code smell accuracy prediction

using the above-mentioned techniques.

The table 4 reflects the software vulnerability accuracy

prediction using the above-mentioned techniques.

Table 3: Comparison of CNN and RNN techniques for code smells

Code Smell Accuracy prediction

using CNN
Accuracy

prediction using

RNN
God Class 90.08% 86.78%

Long

Method
89.18% 81.08%

Table 4: Comparison of CNN and RNN techniques for vulnerabilities

Vulnerability Accuracy prediction

using CNN
Accuracy

prediction using

RNN
Law of Demeter 96.77% 91.39%
Beam member

should serialize
85.50% 88.40%

Too many

method
71.42% 94.28%

Cyclomatic

Complexity
92.64% 80.82%

 Through the research methodology adopted to prophesy

the accuracy of code smells and vulnerabilities using deep

learning techniques, namely, CNN and RNN, it can be

conjectured that contingent upon code smells, CNN

methodology provided the best results as compared to RNN.

While contingent upon vulnerabilities, law of demeter

and cyclomatic complexity conjectured the unrivalled results

from CNN and the vulnerabilities, beam member should

serialize and too many method conjectured unrivalled results

using RNN methodology.

The presence of code smell or vulnerability in

maintenance phase of the SDLC poses grave concern for the

software developers which opens the door for attackers to

easily breach the security protocols. The detection of

particular code smell and vulnerability will help them to

reduce the threat as the percentage of presence poses an

alarming risk towards software as detection in this research

process.

6 Conclusion

 The research paper explores the use of machine learning

and deep learning techniques to detect code smells and

vulnerabilities in Java applications. The methodology is

structured, utilizing various tools and advisors to curate

datasets, compute software metrics, pre-process data, and

apply algorithms for analysis. The findings reveal insights

into the performance of different algorithms for specific

vulnerabilities and code smells. Machine learning algorithms

like JRIP and J48 produce the best results for vulnerabilities

like Law of Demeter, Beam Member Should Serialize,

Npath Complexity, and Too Many Methods. PMD tool

outperforms IntelliJ Idea in detecting code smells like God

Class and Long Method in Java applications. The study

establishes a relationship between code smells and

vulnerabilities, suggesting they share similarities in violation

patterns and practical implications. This aligns with the

99 99.28 98
93.5

90
85.28 82.25 80.25

0

20

40

60

80

100

120

J48 Jrip Random
Forest

Naïve Bayes

Long Method

Code Smell detected using PMD

Code Smell detected using Intellij Idea

Code smell Vulnerability Algorithm Rule matched

God class Too many
methods

JRIP CountDeclMethod>=17

Cyclomatic

complexity

Npath
complexity

J48 SumCyclomaticStrict>8

Long

method

Excessive

method length

JRIP

CountLine>=80,
SumCyclomatic >=11

Elhadj Benkhelifa et al. / Int. J. Comput. Eng. Res. Trends, 11(3), 1-9, 2024

8

theoretical understanding that both code smells and

vulnerabilities can negatively impact software quality and

maintainability. The study compares the accuracy of

Convolutional Neural Networks (CNN) and Recurrent

Neural Networks (RNN) for specific code smells and

vulnerabilities. CNN outperforms RNN for certain code

smells, while RNN provides better accuracy for some

vulnerabilities. The research contributes to the field of

software quality analysis by providing a comprehensive

framework for detecting code smells and vulnerabilities

using machine learning and deep learning approaches.

Future research could expand the dataset, explore advanced

techniques for code smell and vulnerability detection, and

incorporate refactoring strategies. The work carried out can

be further outstretch to other code smells and vulnerabilities

based on software metrics and static software application

detection along with refactoring techniques to be applied for

prevention it in furtherance.

Author Contributions: The author is solely

responsible for Conceptualization, Resources, and Writing.

Data availability: Data available upon request.

Conflict of Interest: There is no conflict of Interest.

Funding: The research received no external funding.

Similarity checked: Yes.

References:

1. Alam, S., Saini, J. R., & Kapoor, R. (2018). Bio-

inspired algorithms in cloud computing: Survey

and open research challenges. Journal of Cloud

Computing: Advances, Systems and Applications,

7(1), 1-22. https://doi.org/10.1186/s13677-018-

0117-1

2. Beigh, B. M., & Peer, M. A. (2019). A review of

bio-inspired routing protocols for wireless sensor

networks. Journal of Network and Computer

Applications, 99, 43-58.

https://doi.org/10.1016/j.jnca.2017.11.002

3. Blasiak, A., Mazur, M., & Ortyl, M. (2020). Bio-

inspired models of secure distributed systems.

Journal of Theoretical Biology, 507, 110455.

https://doi.org/10.1016/j.jtbi.2020.110455

4. Dasgupta, D., Frazier, J., & Bowers, C. P. (2013).

Bio-inspired cybersecurity for smart grid

communications. IEEE Communications

Magazine, 51(1), 70-78.

https://doi.org/10.1109/MCOM.2013.6476870

5. Dasgupta, D., & Majumdar, S. (2015). Anomaly

detection in cybersecurity: From machine learning

to biological inspired techniques. Journal of

Critical Infrastructure Protection, 10, 1-11.

https://doi.org/10.1016/j.ijcip.2015.07.001

6. Dorigo, M., & Stützle, T. (2019). Ant colony

optimization: Overview and recent advances.

Handbook of Metaheuristics, 311-351.

https://doi.org/10.1007/978-1-4939-8753-1_11

7. Gu, Y., Sun, D., & Wu, C. (2021). A survey of bio-

inspired computing in cyber-physical systems.

IEEE Access, 9, 4567-4583.

https://doi.org/10.1109/ACCESS.2020.3047943

8. Li, H., Wang, H., & Lu, W. (2020). Bio-inspired

neural networks for cybersecurity. IEEE

Transactions on Neural Networks and Learning

Systems, 31(8), 2944-2955.

https://doi.org/10.1109/TNNLS.2019.2949041

9. Liu, C., & Zhang, S. (2020). Bio-inspired

cryptographic techniques for secure

communication. Journal of Cryptographic

Engineering, 10(4), 453-468.

https://doi.org/10.1007/s13389-020-00220-1

10. Niyaz, Q., Sun, W., & Javaid, A. Y. (2016). A deep

learning based DDoS detection system in

software-defined networking (SDN). EAI

Endorsed Transactions on Security and Safety,

3(9), e4. https://doi.org/10.4108/eai.28-12-

2017.153515

11. Parpinelli, R. S., & Lopes, H. S. (2011). New

inspirations in swarm intelligence: A survey.

International Journal of Bio-Inspired

Computation, 3(1), 1-16.

https://doi.org/10.1504/IJBIC.2011.038555

12. Pradhan, S., Panda, M., & Pati, B. (2017). Bio-

inspired computational algorithms for information

security: A review. Journal of Information Security

and Applications, 35, 44-54.

https://doi.org/10.1016/j.jisa.2017.06.003

13. Rao, S. S., & Srinivas, K. (2020). Intrusion

detection in distributed computing environments:

A bio-inspired approach. Journal of Network and

Computer Applications, 163, 102672.

https://doi.org/10.1016/j.jnca.2020.102672

14. Saha, S., Bhattacharyya, D., & Kim, T. (2021).

Bio-inspired encryption techniques for secure

distributed systems. International Journal of

Information Management, 58, 102230.

https://doi.org/10.1016/j.ijinfomgt.2020.102230

15. Saleem, Y., & Rehman, S. U. (2014). Bio-inspired

routing protocols for wireless sensor networks: A

review and future challenges. International

Journal of Distributed Sensor Networks, 10(10),

873410. https://doi.org/10.1155/2014/873410

16. Schimit, P. H., & Filho, M. A. G. (2015). Bio-

inspired algorithms applied to network security: A

survey. Applied Soft Computing, 33, 15-28.

https://doi.org/10.1016/j.asoc.2015.04.054

17. Sharma, M., & Bansal, R. K. (2015). Anomaly

detection in network traffic using bio-inspired

algorithm. International Journal of Computer

Applications, 127(11), 9-12.

https://doi.org/10.5120/ijca2015906511

Elhadj Benkhelifa et al. / Int. J. Comput. Eng. Res. Trends, 11(3), 1-9, 2024

9

18. Singh, A., & Dhawan, P. (2017). Bio-inspired

optimization techniques in distributed computing:

A survey. Journal of Network and Computer

Applications, 97, 68-87.

https://doi.org/10.1016/j.jnca.2017.08.001

19. Verma, S., & Kumar, E. (2016). Bio-inspired

security mechanisms for cloud computing

environments. Journal of Information Security,

7(2), 113-123.

https://doi.org/10.4236/jis.2016.72008

20. Wang, Y., & Wang, X. (2018). Biologically

inspired cybersecurity solutions: A survey. IEEE

Access, 6, 67493-67510.

https://doi.org/10.1109/ACCESS.2018.2879374

