
© 2021, IJCERT All Rights Reserved https://doi.org/10.22362/ijcert/2021/v8/i12/v8i1201 211

International Journal of Computer Engineering in Research Trends

Multidisciplinary, Open Access, Peer-Reviewed and fully refereed
Research Paper Volume-8, Issue-12, 2021 Regular Edition E-ISSN: 2349-7084

Serverless Web Application on the Cloud
framework

1
 Mereddy Samhitha,

2
 Preetham Paul Bapuram,

3
Mittapally Vineeth Kumar

1,
B.Tech Student, Department of CSE,Vidya Jyothi Institute of Technology, Hyderabad,Telangana, India.

2,3
B.Tech Student, Department of CSE, CVR College Of Engineering, Rangareddy Dist, Telangana,India.

*Corresponding Authors Email: samhitha.mereddyx@gmail.com, bpreethampaul369@gmail.com,

mittapallyvineethkumar444@gmail.com

Available online at: http://www.ijcert.org

Received: 16/12/2021, Revised: 22/12/2021, Accepted: 25/12/2021, Published: 31/12/2021

Abstract: - During the COVID-19 pandemic, convalescent plasma donors are dearly needed. Most of the
recovered patients are not eligible to donate plasma, and from the minimal number of suitable donors, many are not
coming forward to donate the plasma. The donors' count is already meager, and when someone needs plasma
urgently, it has become challenging to find a donor. People are using social media to circulate their requests for
plasma. Then they might find a donor, and it would be already late by that time. This process is inefficient and very
much time taking. There is a chance that the plasma request could not reach the donors who are willing to donate
plasma and help save a life. Instead, suppose there are platforms wherein the donors who are willing to donate
plasma can register, and the needy can register their request when a request for plasma comes in. In that case, the
eligible donors from the already existing pool of donors shall be presented to the requester. In this way, the donor
search process can be improvised. Such a platform would end the pain in finding a donor and reduce the search
time in finding a potential donor. And such a platform, built using serverless technology, will have more outstanding
technical capabilities.
Keywords: Amazon Web Services, Application Programming Interface, Covid-19,Plasma

--- ---------------------------

1. Introduction

The world today is battling COVID-19. There is

neither a full-fledged vaccine, to prevent the disease, nor any

medicine, to cure the disease, yet. Doctors have resorted to

the traditional Convalescent plasma therapy to treat the

COVID-19 patients. Convalescent plasma therapy may help

people recover from COVID-19[1]. As a result, the demand

of plasma is rapidly increasing. Every day, we come across

many social media posts, stories, messages requesting for

plasma. But most of the times, it would be too late before

someone comes forward to donate. Instead of that, if there is

a platform with ready donors and a request for plasma comes

in, in a very short time the plasma can be donated which

would save one’s life. By using AWS and the cloud-based

infrastructure such as BDTI, initiatives like the EU CCP

platform are able to experiment with a testing environment

and adopt big data technologies and data analytics skills to

process data, promote open source technologies, and advance

research on convalescent plasma therapy. This Server less

Web Application on the Cloud Platform was developed with

the least amount of operational overhead, all while including

the necessary foundational elements such as security,

flexibility, agility, and extensibility.

As the Convalescent Plasma Therapy is in the

protocol for curing the COVID-19, the demand for plasma,

of the recovered patients, has increased. The count of the

voluntary plasma donors is already less and in addition to

that finding a right donor under a very short time, which is

very crucial, has become very difficult for the families of

covid patients. So, there is the need for a platform which

connects COVID patients with the plasma donors and helps

them in finding a donor in the minimum time.

http://www.ijcert.org/

Mereddy Samhitha et.al, “Serverless Web Application on the Cloud framework.”, International Journal of Computer

Engineering In Research Trends, 8(12): pp: 211-215,December-2021.

© 2021, IJCERT All Rights Reserved 212

When used to build and deploy application to

serverless platforms, functional programming delivers the

following benefits:

Composability: Delivers compostable functions via a

consistent, secure, web-native API that can be called from

any client application and on a pay-as-you-go basis;

Accessibility: Enables applications to be easily served,

composed, and consumed on-demand from every piece of

computing infrastructure anywhere;

Speed: Allows developers to deploy low-latency functions

and deploy them quickly and scalably across cloud-to-edge

environments;

Robustness: Ensures that application performance won’t

degrade even as the underlying business logic is distributed

far and wide;

Simplicity: Provides an abstraction for simplified

development of highly scalable applications thereby sparing

developers from needing to write the logic that manages

containers, virtual machines, and other back-end runtime

engines to which execution of microservices will be

dynamically allocated;

Agility: Reduces most dependencies on underlying

infrastructure and provides a polyglot development platform;

Efficiency: Boosts the density and efficiency of cloud CPU,

memory, storage, and other resource usages;

Consistency: Delivers a consistently dynamic, interactive

application experience from any smartphone or edge device,

no matter where a user happens to be, or where the resources

they’re accessing are being served from.

Contribution of this paper is

 To build an application which helps COVID-19 patients

to find a plasma donor within short period of time?

 To build a serverless web application making use of AWS

serverless services, namely AWS Amplify, Amazon

Cognito, Amazon API Gateway, AWS Lambda, Amazon

DynamoDB.

2. Literature Review
We did a review of the literature on cloud

computing and the development of web applications

employing cloud computing technologies. As a group, we've

read a number of papers on cloud computing and how cloud

services may be utilised to develop web-based apps.

Inferences from Literature

Cloud Computing is a new technological

development that can have an incredible effect on the world.

It has numerous advantages that it gives to its clients and

organizations. For example, a portion of the advantages that

it gives to organizations is that it diminishes operating cost

by spending less on maintenance and software upgrades and

focuses more on the businesses itself. But there are many

more challenges the cloud computing must overcome.

Individuals are exceptionally incredulous about whether their

information is secure and private. There are no guidelines or

regulations around the world that provided data through

cloud computing. Europe has data protection laws yet the

US, being one of the most technologically advanced

countries, does not have any data protection laws. Clients

moreover stress over who can reveal their information and

have responsibility for information. But once, there are

measures and guidelines around the world, cloud computing

will revolutionize the future.

The European Commission, with three of its

Directorates-General (DG) (Health and Food Safety (DG

SANTE), Informatics (DG DIGIT), and Communications

Networks, Content and Technology (DG CONNECT)) in

collaboration with the European Blood Alliance (EBA) and

the European Centre for Disease Prevention and Control

(ECDC), created the European Union (EU) COVID-19

Convalescent Plasma (CCP) Platform. This database is based

on the concept of passive immunization (an approach

promoted by the World Health Organization (WHO) Blood

Regulators Network), which tests the potential of plasma

collected from convalescent persons to treat or prevent

viruses and diseases such as COVID-19.

The EU CCP Platform has a web interface where

blood establishments can enter anonymous COVID-19

convalescent plasma donations and patient outcomes (of

transfusion). The data is then analyzed and visualized using

publicly available interactive dashboards. The goal is to

gauge the safety and effectiveness of convalescent plasma

therapy in treating the virus. Blood establishments will

previously have had to register using EUSurvey. The

initiative solicits participation from blood establishments and

through them, clinicians, hospitals, and individual donors.

The European Blood Alliance analyzes the collected data and

general findings will be made available on the website for

researchers to use in advancing studies on the effectiveness

of convalescent plasma therapy in the treatment of COVID-

19. Get more information on how to participate in this study.

The Big Data Test Infrastructure (BDTI)[7], part of

the Connecting Europe Facility programme, promotes big

data to support the public administration’s initiatives in the

EU and interconnect Europe’s national digital landscapes

through digital infrastructure. BDTI hosts the EU CCP

Platform and provides a ready-to-use, virtual environment to

gather and analyze data and the wider monitored use of the

experimental therapy. The EU CCP Platform was built on the

open source technology stack offered by BDTI and

Mereddy Samhitha et.al, “Serverless Web Application on the Cloud framework.”, International Journal of Computer

Engineering In Research Trends, 8(12): pp: 211-215,December-2021.

© 2021, IJCERT All Rights Reserved 213

complemented by Amazon Web Services (AWS)

technologies.

The EU CCP Platform consists of four components:

1) information on participating blood establishments and

their working protocols, 2) information on CCP donations, 3)

information on clinical protocols that are being followed

across the EU—whether highly structured clinical trials or

broader monitored use, and 4) recipient outcomes. All

participating establishments can access the EU CCP

Platform.

By using AWS and the cloud-based infrastructure

such as BDTI, initiatives like the EU CCP platform are able

to experiment with a testing environment and adopt big data

technologies and data analytics skills to process data,

promote open source technologies, and advance research on

convalescent plasma therapy. With the help of AWS

Enterprise Support, this project received support from AWS

technical account managers, solution architects and subject

matter experts during the planning and implementation phase

of the EU CCP platform..

3. System Study

We have developed a simple platform which

connects plasma donors with the needy. Donors and

Recipients has to first register with their details, then the

registered recipients would be able to find donors, with the

same blood group and from the same city as the recipient is

in. After the recipient finds a suitable donor, the details of

one will be shared with the other. The only aim of this

application is to reduce the search time for donors. This web

application is completely serverless. It has been developed,

making use of the Amazon Web Services (AWS). The

services we made use of include – AWS Amplify, Amazon

Cognito, Amazon API Gateway, AWS Lambda, Amazon

DynamoDB. Since the application is serverless, scalability,

high availability of resource, high performance are built into

the application by default.

System Architecture:

Figure 1. System Architecture

4. Methodology

4.1 Components of the Architecture:

AWS Amplify: The AWS Amplify Console is the

control center for full stack web and mobile application

deployments in AWS. Amplify Console provides two main

services, hosting and the Admin UI. Amplify Console

hosting provides a git-based workflow for hosting full stack

serverless web apps with continuous deployment. The Admin

UI is a visual interface for frontend web and mobile

developers to create and manage app backends outside the

AWS Management Console. Amplify supports popular web

frameworks including JavaScript, React, Angular, Vue,

Next.js, and mobile platforms including Android, iOS, React

Native, Ionic, Flutter. Amplify has support for CI/CD.

Amazon Cognito : Amazon Cognito provides
authentication, authorization, and user management for your
web and mobile apps. Users can sign in directly with a
username and password, or through a third party such as
Facebook, Amazon, Google or Apple. The two main
components of Amazon Cognito are user pools and identity
pools. User pools are user directories that provide sign-up
and sign-in options for your app users. Identity pools enable
you to grant your users access to other AWS services.

Amazon API Gateway: Amazon API Gateway is a fully
managed service that makes it easy for developers to create,
publish, maintain, monitor, and secure APIs at any scale.

Mereddy Samhitha et.al, “Serverless Web Application on the Cloud framework.”, International Journal of Computer

Engineering In Research Trends, 8(12): pp: 211-215,December-2021.

© 2021, IJCERT All Rights Reserved 214

APIs act as the "front door" for applications to access data,
business logic, or functionality from your backend services.
Using API Gateway, you can create RESTful APIs and
WebSocket APIs that enable real-time two-way
communication applications. API Gateway supports
containerized and serverless workloads, as well as web
applications. API Gateway handles all the tasks involved in
accepting and processing up to hundreds of thousands of
concurrent API calls, including traffic management, CORS
support, authorization and access control, throttling,
monitoring, and API version management.

AWS Lambda : Lambda is a compute service that lets
you run code without provisioning or managing servers.
Lambda runs your code on a high-availability compute
infrastructure and performs all of the administration of the
compute resources, including server and operating system
maintenance, capacity provisioning and automatic scaling,
code monitoring and logging. With Lambda, you can run
code for virtually any type of application or backend service.
All you need to do is supply your code in one of the
languages that Lambda support. You organize your code into
Lambda Functions[4]. Lambda runs your function only when
needed and scales automatically, from a few requests per day
to thousands per second. You pay only for the compute time
that you consume—there is no charge when your code is not
running. You can invoke your Lambda functions using the
Lambda API, or Lambda can run your functions in response
to events from other AWS services.

Amazon DynamoDB : Amazon DynamoDB is a fully
managed NoSQL database service that provides fast and
predictable performance with seamless scalability.
DynamoDB lets you offload the administrative burdens of
operating and scaling a distributed database so that you don't
have to worry about hardware provisioning, setup and
configuration, replication, software patching, or cluster
scaling. DynamoDB also offers encryption at rest, which
eliminates the operational burden and complexity involved in
protecting sensitive data. With DynamoDB[6], you can
create database tables that can store and retrieve any amount
of data and serve any level of request traffic. You can scale
up or scale down your tables' throughput capacity without
downtime or performance degradation. You can use the
AWS Management Console to monitor resource utilization
and performance metrics. DynamoDB provides ondemand
backup capability. It allows you to create full backups of
your tables for long-term retention and archival for
regulatory compliance needs.

React: React is a declarative, efficient, and flexible
JavaScript library for building user interfaces. It lets you
compose complex UIs from small and isolated pieces of code
called ―components‖. React makes it painless to create
interactive UIs. Design simple views for each state in your
application and React will efficiently update and render just
the right components when your data changes. Declarative
views make your code more predictable and easier to debug.

4.2 Working Principle of the Components:

DynamoDB Table: serves as the persistence layer of the
application. One single table is used to store the information
of the users of the application. DynamoDB, being a No SQL
database, there is no need of designing a schema for the
table. Though, schema-less it is mandatory to provide a
primary key (partition key) for the table. The DynamoDB
table is set up using user id, of String data type, as partition
key and with other settings, such as provisioned capacity set
to 5 reads and 5 writes that AWS provides by default under
free tier. The DynamoDB table is created using the AWS
Management Console.

Lambda Functions: Lambda Functions perform the
business logic of the application. In total, 4 lambda functions
were written, each performing a unique task. Three of them
interact with the database and other lambda function is used
to auto confirm the user upon signup. Lambda functions were
written in Java using the AWS SDK for Java. The lambda[4]
functions were written in the local machine using the Eclipse
IDE. Once thoroughly tested, they were deployed to the
cloud using the AWS CLI. Once the lambdas are written,
each lambda is packaged into an executable jar file and that
jar file is deployed to the AWS through AWS CLI.

Amazon API Gateway: REST APIs – collection of
resources and methods – are built at the Amazon API
Gateway. The API is integrated with Lambda functions in the
backend. To ensure that only authenticated users have access
to the backend resources, Cognito User Pool is configured as
the authorizer.

Amazon Cognito User Pool: Amazon Cognito User
Pool is setup. Amazon Cognito handles complete user
management and user authentication. After the user pool has
been created, an App client is added to the user pool.
Amazon Cognito SDK for JavaScript is used in the front end
react application to write the code that performs user
management tasks – sign in, sign up, sign out, etc.

AWS Amplify: Once the front end and back end are
ready, and after the integration has been done, the application
is deployed at the AWS Amplify Console. Initially, the git
repository containing the source code is connected to the
Amplify and then build settings are configured then the
Amplify deploys the application directly from the Amplify
console to a globally available CDN.

React Components: In react all required components are
building and they are reused. Each component was having its
own CSS file for styling. All requests were made using fetch
API, and the data fetched is stored into state of the
components. React Routing was used where ever it was
required and rendered the appropriate components.

Mereddy Samhitha et.al, “Serverless Web Application on the Cloud framework.”, International Journal of Computer

Engineering In Research Trends, 8(12): pp: 211-215,December-2021.

© 2021, IJCERT All Rights Reserved 215

4.3 Flow model:

Figure 2. Flow model

4.4 Test cases:

Test Cases: Overall project comprising into 4 cases such as

 Case 1: Submitting the registration form without completely

filling it. i.e User will not be able to submit the form without

filling it completely. User will be prompted to fill the

missing details.

Case 2: Not allowing same username (email) i.e. If user

tries to register with already existing username, console error

will be logged and user will not be able to proceed further.

Case 3: User should not be able to login with bad credentials

i.e If any unwanted user tries to login into the application,

then they will not be allowed into the website until he/she

exists the correct username and password.

Case 4: When a recipient logs in, only the matching donors

(i.e., donors with same blood group and in the same city as

the recipient) should be presented to the recipient only

matching donors are presented.

Case 5: Once a recipient confirms a donation with a donor.

From then on only that specific donor’s information should

be presented

5. Conclusion
When there is an urgent need for plasma, it is very

crucial to find a potential donor in the very short time. This

application will help in such a case. And the application

being server less has other advantages too. Coming to the

application development process, traditionally, application

development involves various processes such as developing

an application, hosting using a third-party mechanism,

developing and maintaining whole server architecture. But

cloud-ready architecture provides all solutions in one go.

Cloud ready application is developed as a distributed system

that uses loosely coupled components, is designed to be

horizontally scalable, and run on an automated and elastic

platform. Ideally, it should be possible to migrate these

applications between various cloud platforms without service

interruptions. As all the services used in developing the

application are completely server less and fully managed by

AWS, the application is scalable, there is always high

availability of the resources, the application is secure and

robust .Future work However, there is scope of incorporating

many more features into the project. Some of them are –

• Integrating with hospital databases to get the

information of people who are recovered from

COVID.

• Collaborating with existing plasma banks.

• Adding notification services to notify donors, in case

of urgent plasma needs, as well as recipients

immediately after finding a donor.

• Extending the services of application for all plasma

donation needs, not just confined to serving COVID

patients.

• A sophisticated technique for one-to-one donor-

recipient matching must be developed.

• Full potential of the cloud services has to be used to

develop a high-performance application

References
[1]

https://www.researchgate.net/publication/312040779_Buildi

ng_Web_Application_Using_Cloud Computing

[2] https://en.wikipedia.org/wiki/Amazon_Web_Services.

[3] https://aws.amazon.com/lambda/web-apps

[4] https://docs.aws.amazon.com/lambda

[5]

https://docs.aws.amazon.com/apigateway/latest/developergui

de

[6]

https://docs.aws.amazon.com/amazondynamodb/latest/APIR

eference.

[7]

https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/bi

g+data+test+infrastructure

https://www.researchgate.net/publication/312040779_Building_Web_Application_Using_Cloud
https://www.researchgate.net/publication/312040779_Building_Web_Application_Using_Cloud
https://en.wikipedia.org/wiki/Amazon_Web_Services
https://aws.amazon.com/lambda/web-apps
https://docs.aws.amazon.com/lambda
https://docs.aws.amazon.com/apigateway/latest/developerguide
https://docs.aws.amazon.com/apigateway/latest/developerguide
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference
https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/big+data+test+infrastructure
https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/big+data+test+infrastructure

