IJCERT

International Journal of Computer Engineering in Research Trends

Multidisciplinary, Open Access, Peer-Reviewed and fully refereed

Research Paper

Volume-10, Issue-4,2023 Regular Edition

E-ISSN: 2349-7084

SMERAS - State Management with Efficient
Resource Allocation and Scheduling in Big Data
Stream Processing Systems

B. Gnana Deepthi’, K. Sandhya Rani?, P. Venkata Krishna®
! Dept. of Computer Science & Engineering, Sri Padmavati Mahila VisvaVidyalayam, Tirupati
2 Rajiv Gandhi University of Knowledge Technologies, RGUKT-RK Valley
s Dept. of Computer Science & Engineering, Sri Padmavati Mahila VisvaVidyalayam, Tirupati

e-mail: gdeepthi.bitra@gmail.com, sandhyaranikasireddy@yahoo.co.in, pvk@spmvv.ac.in

*Corresponding Author: gdeepthi.bitra@gmail.com

https://doi.org/10.22362/ijcert/2023/v10/i04/v10i0401

Received: 12/02/2023, Revised: 17/03/2023,

Accepted: 21/04/2023 Published:28/04/2023

Abstract: - Recent advances in big data and distributed computing systems having prominent data management
with low cost of storage and efficient resource scheduling strategies leading reliable and scalable system designs. It
helps for developing better decision-making systems in the era of Big Data. Speed of data arrival rate demands the
speed of data processing rate. Existing scenarios uses complex query execution engines in distributed manner to
process real-time and near real-time streaming data. Data Stream processing systems facing challenges with
respect to resource management and are looking for the efficient resource scheduling and query execution
strategies. In this paper, the SMERAS model is proposed and it uses a state full stream management based on a
pipeline with various scheduling queues for managing streams of data. Experimental results show the performance
analysis of the proposed system compared with the existing systems.

Keywords: Big Data, Stream Processing, State and Resource Management, Resource allocation and Scheduling

1. Introduction

Today’s digital era concentrating on the challenges of
data processing of rapid growing big data from various
sources like sensors, computer and mobile devices, social
media, e-commerce portals, business applications etc., To
process real-life applications, real-time and near real-time
data is more important than older data [1]. This data most
probably considers as streams of volume and gives advances
to the business and real-world applications to develop
knowledge-based decision-making systems with valuable
insights. Big Data Processing (BDP) approaches, batch and
stream-oriented are the prominent fields of processing such
massive data. MapReduce is the basic batch-oriented
approach in BDPs. Map Reduce does not supports high-level
programming and re-use of state in iterations in the

© 2023, IJCERT All Rights Reserved

processing [2]. Stream processing systems can overcome the
limitations of batch approach and can provide features like
flexibility, scalable, reliable and fault-tolerance.

Processing streams of data in real-time is the major
requirement for the data stream applications. Data streams
are the basic smallest element or unit in streaming
applications and flows through the network as potentially
infinite ordered streams of data. Streams are not affordable to
store into memory and process from memory as can be
deployed from the cloud clusters [3]. To increase the
efficiency and performance of the system, multicore system
architectures and distributed parallel computing approaches
must be incorporated in the system design. Such systems can
provide greater computing results like throughput and
latency. More researches proposed different frameworks for

150


mailto:pvk@spmvv.ac.in
mailto:gdeepthi.bitra@gmail.com
https://doi.org/10.22362/ijcert/2023/v10/i04/v10i0401

B. Gnana Deepthi, Prof. K. Sandhya Rani, Prof. P. Venkata Krishna (2023). SMERAS - State Management with Efficient
Resource Allocation and Scheduling in Big Data Stream Processing Systems .International Journal of Computer

Engineering In Research Trends, 10(4):pp.150-154

data stream processing systems in the field of big data
computing.

In this paper, the contributions proposed are the
implementation of the proposed architecture for stateful
management of the operations and resource allocation of the
real-time streams to reduce the starvation situation in the
scheduling. The architecture considers distributed clusters for
processing data streams in real-time with stateful operations.
The remaining sections presented in this paper are as follows.
Section 2 describes the preliminaries considered for the
work. Section 3 is presenting the literature review. In section
4, proposed system architecture is given and the modules in
the workflow of the system are described. In section 5, the
results and discussion about the implementation of the
system are provided. Section 6 containing the conclusion
about the research work done.

2. Background

Most of the business applications are providing data-
driven services for the users. The data management
architectures need to be more consistent and scalable for the
demand of the decision-making systems. Stream processing
systems must react faster to the real-world event-driven
applications [4]. It is adopted in major business fields and
inspires researches for allowing scale-out and with higher
throughput and latency. Figure 1 gives the evolutionary
stages of data processing systems [5].

1G 2G 3G 4G
Hadoop MR Spark Flink

Scalability Scalability

Scale-in/Scale-out

Local storage

Fault-tolerance Fault-tolerance

Map/Reduce (MR)

sQL Stream processing Stream processing

User Defined

Functions (UDF) In-memory performance

In-memory
performance

Iterative algorithm

Lambda Architecture

Fig 1. Evolution of Data Processing Systems

Apache Flink’s [6] scalability is distributed to thousands
of cores and stand-alone clusters can be connected to various
open-source resource managers with a full software stack for
organizing data streams. Its stateful operations make it as top
in the stream processing applications. Data remembered for
future computation is state of the application [14]. Data
processing pipelines integrated with functional programming
API to process continuous data flow events.

2.1 State Handling in Flink

State Management in stream processing systems done in
stateless and stateful operations. In stateless operation, output
depends on input and in stateful operation, sequence of
inputs generates intermediate periodic results maintained in a

© 2023, IJCERT All Rights Reserved

data structure called state [7]. State management in data
processing systems can be considered with respect to several
aspects like operations on state, maintenance, sharing of
state, performance, load balancing and applications of state.

2.2 Resource Scheduling in Flink

The resource allocation in the streaming applications is
the major considerable problem for the performance and
computational difficulty in big data computing [8]. In
general, the computation done in distributed manner in the
stream processing systems [9]. Various approaches are
proposed for optimising the performance measures like
reducing the computation time, minimising the resources,
and efficiently balancing the load on the cluster of nodes.
Here jobs are periodical and associated with periodical time,
required resources, and scheduled to get optimum result [10].

Through Apache Flink [11], data events not stored in
memory and executed or integrated dynamically within
single JVM or within clusters of one or multi-nodes. This
kind of storage operation is noted as sink means input data
streams are exported into databases and no output is returned.
User submitted programs compiled, pre-processed, and
applied on the datasets as Directed Acyclic Graphs. Default
query optimizer processes the graphs and minimizes the
query execution time. Special memory data structures used
for hashing and sorting leads efficient memory management.

3. Literature Review

Xiang Ni et al. [12] presented a generic strategy for
resource allocation, by considered the unobserved data with
implementing the reinforcement learning. Author considering
the proposed problem as the NP-complete and using graph
encoding and graph-aware decoder for getting the optimized
results than the existing techniques.

Wasiur R. KhudaBukhsh et. al. [13] studied the
heterogenous cloud clusters for understanding the job
scheduling in the big data systems. The authors proposed
randomised cost-based policy the job scheduling in the big
data clusters. They achieved scaling in the several server
buffers by implementing the numerical evaluations in the
multi-stage systems.

Tiziano De Matteis et. al. [14] propoed algorithmic
skeleton for state management in stream processing. The
authors merged the structured parallelism for getting the
better performance of throughput and latency in the stream
processing state management. Multi-core architectures using
Fastflow framework in the window aggregations of the state
operations. Window farming, key partitioning and pane
farming are the modules implemented in this work for doing
the window partitioning.

Vasiliki Kalavri et. al. [15] developed workload-aware
policy for the state management in the stream processing.

151



B. Gnana Deepthi, Prof. K. Sandhya Rani, Prof. P. Venkata Krishna (2023). SMERAS - State Management with Efficient

Resource Allocation and Scheduling in Big Data Stream Processing Systems

Engineering In Research Trends, 10(4):pp.150-154

Here authors focussed on the limitations of the LSM-based
distributed processing and with experimental results they
gain higher throughput and latency.

Hui Zhao et. al. [16] proposed task scheduling algorithm
for video transcoding. In three steps like data analysation,
pre-processing and proposal of Job Shop Scheduling, authors
implemented task scheduling strategy for minimising the
transcoding time. The results showing the efficient nature of
the algorithm for better load balancing. It combining two
existing policies for making a hybrid approach of max-min
and min-min algorithms.

Marios Fragkoulis et. al. [17] discussed about the survey
taken for understanding the evolution of stream processing
from the past 20 years. Major functional features of stream
processing are considered for the survey. They are
categorized as first generation and 2nd generation.
Requirements, various architectures, disorders in the
processing, challenges are discussed in their work.

Paris Carbone et. al. [18] discussed about the
aggregations on sliding windows. They get feasible results
for the records came as streams. Sliding windows used for
handling input. Challenges considered are computing large
records, and getting throughput.

Gerrit JanRen et. al. [19] developed an algorithm for
scheduling the tasks with low latency and feasible
bandwidth. Proposed algorithm is the search-based method.
Results are almost 50% reduces the latency that obtained by
existing algorithms. Fire detection benchmark is considered
for the job graphs to schedule. Limited bandwidth is used for
the experimental results.

4. SMERAS Architecture

Data flow in the Flink’s processing pipeline is denoted
as a directed acyclic graph. Pipeline's primary building block
is state since it contains the complete status of the
computation at any given point. Operator-state and Keyed-
state are the two states maintained in the state management
and that are reflected as exactly once in the operation update.
In the keyed state, MapState and ReduceState API’s [20]
used for doing the mapping and reducing operations with
key-value operations put and get.

© 2023, IJCERT All Rights Reserved

.International Journal of Computer

ggregate

@D @

join

Data Sources {

(1) Logical Data Flow Graph

@@ ——>®
=

Data Sources .
- ’.
Get/Put | <—

>

(11) Physical Data Flow Graph

Fig 2. Data Flow Graphs in Stateful operations

The logical data flow graph G = {T, E} in figure (i), is
mapped as G* = {T*, E*}, the physical data distribution
graph showed in figure (ii) where the logical task t in G
belongsto T (t e T) is mapped as set of physical tasks in G*
belongs to T* (t1,t2,...tn € T).

‘Worker Node
ST T T T T T e o~
N
! \
Stream Job
T r Y -

Checkpoint executor

Kafka Cluster Snapshot Store

Resource Managed
Scheduler State for Next Operator

Task Manager

Fig 3. SMERAS Architecture for State management and
Resource Allocation

In this architecture, the input streams are buffered into
the stream buffer, and further converted to directed acyclic
graph and mapped as number of tasks streams into the data
pipeline. Session Window aggregation [18] is used which
dynamically set by the dynamic change in the input stream
and each logical task graph is redeployed as per the structure
of the input. Zookeeper [21] maintains the metadata at the
checkpoints. Job Manager do the task scheduling and
maintains the state information.

Algorithm to schedule stream with SMERAS

Input — configured stream jobs
JS = {jlij:jS,----jn}
1. # Set all the worker nodes based on resources
availability.
2. # Load jobs into the stream buffer
3. # Set priorities to the jobs and time quantum T,

152



B. Gnana Deepthi, Prof. K. Sandhya Rani, Prof. P. Venkata Krishna (2023). SMERAS - State Management with Efficient
Resource Allocation and Scheduling in Big Data Stream Processing Systems .International Journal of Computer

Engineering In Research Trends, 10(4):pp.150-154

4. # Set burst time B, according to stream speed
5. # Build a pipeline to schedule the jobs Jg
6. foreach Job in Jg

7. if(Bi<Ty

8. run job from the pipeline
9. state is updated

10. else

11. run job until T, expires

12. repeat step 6

13. endif

14. end for

Round robin scheduling pipeline processes the sub tasks
with in specific time intervals [22]. This can moderate the
execution speed and waiting time of the tasks in the stream
buffer dynamically with elastic pipeline. It reduces the
starvation problem of large tasks with minimum waiting
time. Snapshot information of all tasks is passed to next
operator. Here the task scheduler is customizable and
optimizes the resource management in a guaranteed scale.

The scheduling tasks queued into the stream pipeline as
Js. On each worker node jobs loaded according to the load on
the stream buffer that changes dynamically. Priorities and
time quantum Tq assigned to each job in the queue. For each
job, the burst time Bt compared with Tq, later went for
processing and state updated. It will be iterated on the worker
nodes.

Flink’s ProcessFunctions [3] control state and time of
each processing event by storing the state of the new arrival
event and for the future event specific timestamp is
registered. Here, past input is remembered and is used for
influencing the future event processing. Current state is
maintained here for the computing event and result is passed
to the next events. State stored locally and distributed across
cluster instead storing in external storage that guarantees
consistency. Even in failure, state restored to the last
checkpoint and efficient scalability can be achieved.

5. Results & Discussion

The proposed architecture is implemented for the
stateful resource allocation strategy with the window
aggregate based partition protocol. The dataset used here is
the open accessible vehicle detection dataset available in
Kaggle. In this section, the results of experiments are
discussed and compared with the existing scheduling
strategies.

The implementation takes place with the YARN cluster
of 10 machines on the Amazon EC2 cloud and on 64-bit
Cent OS with each having 16 CPU cores, 16 GB RAM and
512 GB SSD and HDD both. For state backend store,
RocksDB out of core locality is used. Stream snapshotting
done in Hadoop HDFS.

The experimental results are showed in the below
figures 4-6. The results specifying the overall performance of
the proposed SMERAS architecture is higher and resource

© 2023, IJCERT All Rights Reserved

utilization is improved with 7.8%, 7.6% and 9.4% of the
CPU core and throughput ratio. The latency reduced for each
set of window aggregations. The performance gain is in an
average of 9.6% than the default system.

300
Flink (Default)

250 wSMERAS
200
150
100
50
0
pl p2 p3 p4

Fig 4. Latency measured for SMERAS and Flink (default)
with respect to the incoming stream rates.

Latency

(=R ]

o o

Completion time (mins)

= koW B L Oy
[=]

o o

0 4 8 16 32
Number of Tasks

Fig 5. Throughput is measured with respect to the number of
jobs per each core and the job completion time in mins.

350

c.)

el

w
o
oS

7

7

I S B B

100 oI

o BRI
0

State size (GB)

Snapshot Duration (s

Fig 6. Snapshot Duration measurement in State size.

Overall results of this experiment showing that the
proposed SMERAS architecture for the stateful resource
management compared with the default behavior of the Flink
[19] performance. The elastic window partition for the
stream pipeline getting more accurate results for throughput

153



B. Gnana Deepthi, Prof. K. Sandhya Rani, Prof. P. Venkata Krishna (2023). SMERAS - State Management with Efficient
Resource Allocation and Scheduling in Big Data Stream Processing Systems .International Journal of Computer

Engineering In Research Trends, 10(4):pp.150-154

and latency. High resource utilization is observed for getting
high throughput. And the SMERAS algorithm getting less
completion time for the number of jobs processed.

6. Conclusion

In this work, the stateful operations and resource
scheduling in the data stream processing systems analyzed
efficiently with the proposed architecture SMERAS. It using
the dynamic elastic data pipelines to stream the incoming
events in the application. It producing better results than the
existing researches with high throughput, low latency, and
better resource utilization.

References

[1] Tian, L., & Chandy, K. M. (2006, September). Resource
allocation in streaming environments. In 2006 7th
IEEE/ACM International Conference on Grid Computing
(pp. 270-277). IEEE.

[2] To, Q. C., Soto, J., & Markl, V. (2018). A survey of state
management in big data processing systems. The VLDB
Journal, 27(6), 847-872.

[3] Asyabi, S. E. Toward Workload-Aware
Management in Streaming Systems.

[4] Langhi, S., Tommasini, R., & Della Valle, E. (2020,
December). Extending kafka streams for complex event
recognition. In 2020 IEEE International Conference on Big
Data (Big Data) (pp. 2190-2197). IEEE.

[5] Fragkoulis, M., Carbone, P., Kalavri, V., & Katsifodimos,
A. (2020). A survey on the evolution of stream processing
systems. arXiv preprint arXiv:2008.00842.

[6] Li, Z., Yu, J., Bian, C., Pu, Y., Wang, Y., Zhang, Y., &
Guo, B. (2020). Flink-er: an elastic resource-scheduling
strategy for processing fluctuating mobile stream data on
flink. Mobile Information Systems, 2020, 1-17.

[7] de Souza, P. R., Matteussi, K. J., dos Anjos, J. C., Dos
Santos, J. D., Geyer, C. F. R., & da Silva Veith, A. (2018,
July). Aten: A dispatcher for big data applications in
heterogeneous systems. In 2018 International Conference on
High Performance Computing & Simulation (HPCS) (pp.
585-592). IEEE.

[8] Jiang, Y., Huang, Z., & Tsang, D. H. (2016). Towards
max-min fair resource allocation for stream big data analytics
in shared clouds. IEEE Transactions on Big Data, 4(1), 130-
137.

[9] Kiruthiga, R., & Akila, D. (2021, January).
Heterogeneous fair resource allocation and scheduling for
big data streams in cloud environments. In 2021 2nd
International Conference on Computation, Automation and
Knowledge Management (ICCAKM) (pp. 128-132). IEEE.
[10] Ahmad, W., Alam, B., & Atman, A. (2021). An energy-
efficient big data workflow scheduling algorithm under

State

© 2023, IJCERT All Rights Reserved

budget constraints for heterogeneous cloud environment. The
Journal of Supercomputing, 77, 11946-11985.

[11] Tang, Z., Du, L., Zhang, X., Yang, L., & Li, K. (2021).
AEML: An acceleration engine for multi-GPU load-
balancing in distributed heterogeneous environment. IEEE
Transactions on Computers, 71(6), 1344-1357.

[12] Ni, X., Li, J., Yu, M., Zhou, W., & Wu, K. L. (2020,
April). Generalizable resource allocation in stream
processing via deep reinforcement learning. In Proceedings
of the AAAI Conference on Atrtificial Intelligence (Vol. 34,
No. 01, pp. 857-864).

[13] KhudaBukhsh, W. R., Kar, S., Alt, B., Rizk, A., &
Koeppl, H. (2020). Generalized cost-based job scheduling in
very large heterogeneous cluster systems. IEEE Transactions
on Parallel and Distributed Systems, 31(11), 2594-2604.

[14] De Matteis, T., & Mencagli, G. (2017). Parallel patterns
for window-based stateful operators on data streams: an
algorithmic skeleton approach. International Journal of
Parallel Programming, 45(2), 382-401.

[15] Kalavri, V., & Liagouris, J. (2020, July). In support of
workload-aware streaming state management. In Proceedings
of the 12th USENIX Conference on Hot Topics in Storage
and File Systems (pp. 19-19).

[16] Zhao, H., Zheng, Q., Zhang, W., & Wang, J. (2016).
Prediction-based and locality-aware task scheduling for
parallelizing video transcoding over heterogeneous
mapreduce cluster. IEEE Transactions on Circuits and
Systems for Video Technology, 28(4), 1009-1020.

[17] Carbone, P., Fragkoulis, M., Kalavri, V. &
Katsifodimos, A. (2020, June). Beyond analytics: The
evolution of stream processing systems. In Proceedings of
the 2020 ACM SIGMOD international conference on
Management of data (pp. 2651-2658).

[18] Carbone, P., Katsifodimos, A., & Haridi, S. (2019).
Stream Window Aggregation Semantics and Optimization.
[19] JanRen, G., Verbitskiy, I., Renner, T., & Thamsen, L.
(2018, December). Scheduling stream processing tasks on
geo-distributed heterogeneous resources. In 2018 IEEE
International Conference on Big Data (Big Data) (pp. 5159-
5164). IEEE.

[20] AKil, B., Zhou, Y., & Réhm, U. (2017, December). On
the usability of Hadoop MapReduce, Apache Spark &
Apache flink for data science. In 2017 IEEE International
Conference on Big Data (Big Data) (pp. 303-310). IEEE.
[21] Tang, S., He, B., Liu, H., & Lee, B. S. (2016). 9
Resource Management in Big Data Processing Systems. Big
Data Principles and Paradigm.

[22] Stein, O., Blamey, B., Karlsson, J., Sabirsh, A., Spjuth,
O., Hellander, A., & Toor, S. (2020, December). Smart
Resource Management for Data Streaming using an Online
Bin-packing Strategy. In 2020 IEEE International
Conference on Big Data (Big Data) (pp. 2207-2216). IEEE.

154



