
© 2023, IJCERT All Rights Reserved 150

International Journal of Computer Engineering in Research Trends

Multidisciplinary, Open Access, Peer-Reviewed and fully refereed
Research Paper Volume-10, Issue-4 ,2023 Regular Edition E-ISSN: 2349-7084

SMERAS - State Management with Efficient
Resource Allocation and Scheduling in Big Data

Stream Processing Systems

B. Gnana Deepthi
1
, K. Sandhya Rani

2
, P. Venkata Krishna

3

1
 Dept. of Computer Science & Engineering, Sri Padmavati Mahila VisvaVidyalayam, Tirupati

2
 Rajiv Gandhi University of Knowledge Technologies, RGUKT-RK Valley

3
Dept. of Computer Science & Engineering, Sri Padmavati Mahila VisvaVidyalayam, Tirupati

e-mail: gdeepthi.bitra@gmail.com, sandhyaranikasireddy@yahoo.co.in, pvk@spmvv.ac.in

*Corresponding Author: gdeepthi.bitra@gmail.com

https://doi.org/10.22362/ijcert/2023/v10/i04/v10i0401

Received: 12/02/2023, Revised: 17/03/2023, Accepted: 21/04/2023 Published:28/04/2023

Abstract: - Recent advances in big data and distributed computing systems having prominent data management

with low cost of storage and efficient resource scheduling strategies leading reliable and scalable system designs. It
helps for developing better decision-making systems in the era of Big Data. Speed of data arrival rate demands the
speed of data processing rate. Existing scenarios uses complex query execution engines in distributed manner to
process real-time and near real-time streaming data. Data Stream processing systems facing challenges with
respect to resource management and are looking for the efficient resource scheduling and query execution
strategies. In this paper, the SMERAS model is proposed and it uses a state full stream management based on a
pipeline with various scheduling queues for managing streams of data. Experimental results show the performance
analysis of the proposed system compared with the existing systems.

Keywords: Big Data, Stream Processing, State and Resource Management, Resource allocation and Scheduling

--- ---------------------------

1. Introduction

Today’s digital era concentrating on the challenges of

data processing of rapid growing big data from various

sources like sensors, computer and mobile devices, social

media, e-commerce portals, business applications etc., To

process real-life applications, real-time and near real-time

data is more important than older data [1]. This data most

probably considers as streams of volume and gives advances

to the business and real-world applications to develop

knowledge-based decision-making systems with valuable

insights. Big Data Processing (BDP) approaches, batch and

stream-oriented are the prominent fields of processing such

massive data. MapReduce is the basic batch-oriented

approach in BDPs. Map Reduce does not supports high-level

programming and re-use of state in iterations in the

processing [2]. Stream processing systems can overcome the

limitations of batch approach and can provide features like

flexibility, scalable, reliable and fault-tolerance.

Processing streams of data in real-time is the major

requirement for the data stream applications. Data streams

are the basic smallest element or unit in streaming

applications and flows through the network as potentially

infinite ordered streams of data. Streams are not affordable to

store into memory and process from memory as can be

deployed from the cloud clusters [3]. To increase the

efficiency and performance of the system, multicore system

architectures and distributed parallel computing approaches

must be incorporated in the system design. Such systems can

provide greater computing results like throughput and

latency. More researches proposed different frameworks for

mailto:pvk@spmvv.ac.in
mailto:gdeepthi.bitra@gmail.com
https://doi.org/10.22362/ijcert/2023/v10/i04/v10i0401

B. Gnana Deepthi, Prof. K. Sandhya Rani, Prof. P. Venkata Krishna (2023). SMERAS - State Management with Efficient

Resource Allocation and Scheduling in Big Data Stream Processing Systems .International Journal of Computer

Engineering In Research Trends, 10(4):pp.150-154

© 2023, IJCERT All Rights Reserved 151

data stream processing systems in the field of big data

computing.

In this paper, the contributions proposed are the

implementation of the proposed architecture for stateful

management of the operations and resource allocation of the

real-time streams to reduce the starvation situation in the

scheduling. The architecture considers distributed clusters for

processing data streams in real-time with stateful operations.

The remaining sections presented in this paper are as follows.

Section 2 describes the preliminaries considered for the

work. Section 3 is presenting the literature review. In section

4, proposed system architecture is given and the modules in

the workflow of the system are described. In section 5, the

results and discussion about the implementation of the

system are provided. Section 6 containing the conclusion

about the research work done.

2. Background

Most of the business applications are providing data-

driven services for the users. The data management

architectures need to be more consistent and scalable for the

demand of the decision-making systems. Stream processing

systems must react faster to the real-world event-driven

applications [4]. It is adopted in major business fields and

inspires researches for allowing scale-out and with higher

throughput and latency. Figure 1 gives the evolutionary

stages of data processing systems [5].











Fig 1. Evolution of Data Processing Systems

Apache Flink’s [6] scalability is distributed to thousands

of cores and stand-alone clusters can be connected to various

open-source resource managers with a full software stack for

organizing data streams. Its stateful operations make it as top

in the stream processing applications. Data remembered for

future computation is state of the application [14]. Data

processing pipelines integrated with functional programming

API to process continuous data flow events.

2.1 State Handling in Flink

State Management in stream processing systems done in

stateless and stateful operations. In stateless operation, output

depends on input and in stateful operation, sequence of

inputs generates intermediate periodic results maintained in a

data structure called state [7]. State management in data

processing systems can be considered with respect to several

aspects like operations on state, maintenance, sharing of

state, performance, load balancing and applications of state.

2.2 Resource Scheduling in Flink

The resource allocation in the streaming applications is

the major considerable problem for the performance and

computational difficulty in big data computing [8]. In

general, the computation done in distributed manner in the

stream processing systems [9]. Various approaches are

proposed for optimising the performance measures like

reducing the computation time, minimising the resources,

and efficiently balancing the load on the cluster of nodes.

Here jobs are periodical and associated with periodical time,

required resources, and scheduled to get optimum result [10].

Through Apache Flink [11], data events not stored in

memory and executed or integrated dynamically within

single JVM or within clusters of one or multi-nodes. This

kind of storage operation is noted as sink means input data

streams are exported into databases and no output is returned.

User submitted programs compiled, pre-processed, and

applied on the datasets as Directed Acyclic Graphs. Default

query optimizer processes the graphs and minimizes the

query execution time. Special memory data structures used

for hashing and sorting leads efficient memory management.

3. Literature Review
Xiang Ni et al. [12] presented a generic strategy for

resource allocation, by considered the unobserved data with

implementing the reinforcement learning. Author considering

the proposed problem as the NP-complete and using graph

encoding and graph-aware decoder for getting the optimized

results than the existing techniques.

Wasiur R. KhudaBukhsh et. al. [13] studied the

heterogenous cloud clusters for understanding the job

scheduling in the big data systems. The authors proposed

randomised cost-based policy the job scheduling in the big

data clusters. They achieved scaling in the several server

buffers by implementing the numerical evaluations in the

multi-stage systems.

Tiziano De Matteis et. al. [14] propoed algorithmic

skeleton for state management in stream processing. The

authors merged the structured parallelism for getting the

better performance of throughput and latency in the stream

processing state management. Multi-core architectures using

Fastflow framework in the window aggregations of the state

operations. Window farming, key partitioning and pane

farming are the modules implemented in this work for doing

the window partitioning.

Vasiliki Kalavri et. al. [15] developed workload-aware

policy for the state management in the stream processing.

B. Gnana Deepthi, Prof. K. Sandhya Rani, Prof. P. Venkata Krishna (2023). SMERAS - State Management with Efficient

Resource Allocation and Scheduling in Big Data Stream Processing Systems .International Journal of Computer

Engineering In Research Trends, 10(4):pp.150-154

© 2023, IJCERT All Rights Reserved 152

Here authors focussed on the limitations of the LSM-based

distributed processing and with experimental results they

gain higher throughput and latency.

Hui Zhao et. al. [16] proposed task scheduling algorithm

for video transcoding. In three steps like data analysation,

pre-processing and proposal of Job Shop Scheduling, authors

implemented task scheduling strategy for minimising the

transcoding time. The results showing the efficient nature of

the algorithm for better load balancing. It combining two

existing policies for making a hybrid approach of max-min

and min-min algorithms.

Marios Fragkoulis et. al. [17] discussed about the survey

taken for understanding the evolution of stream processing

from the past 20 years. Major functional features of stream

processing are considered for the survey. They are

categorized as first generation and 2nd generation.

Requirements, various architectures, disorders in the

processing, challenges are discussed in their work.

Paris Carbone et. al. [18] discussed about the

aggregations on sliding windows. They get feasible results

for the records came as streams. Sliding windows used for

handling input. Challenges considered are computing large

records, and getting throughput.

Gerrit Janßen et. al. [19] developed an algorithm for

scheduling the tasks with low latency and feasible

bandwidth. Proposed algorithm is the search-based method.

Results are almost 50% reduces the latency that obtained by

existing algorithms. Fire detection benchmark is considered

for the job graphs to schedule. Limited bandwidth is used for

the experimental results.

4. SMERAS Architecture
Data flow in the Flink’s processing pipeline is denoted

as a directed acyclic graph. Pipeline's primary building block

is state since it contains the complete status of the

computation at any given point. Operator-state and Keyed-

state are the two states maintained in the state management

and that are reflected as exactly once in the operation update.

In the keyed state, MapState and ReduceState API’s [20]

used for doing the mapping and reducing operations with

key-value operations put and get.

Fig 2. Data Flow Graphs in Stateful operations

The logical data flow graph G = {T, E} in figure (i), is

mapped as G* = {T*, E*}, the physical data distribution

graph showed in figure (ii) where the logical task t in G

belongs to T (t ϵ T) is mapped as set of physical tasks in G*

belongs to T* (t1, t2,…tn ϵ T).

Fig 3. SMERAS Architecture for State management and

Resource Allocation

In this architecture, the input streams are buffered into

the stream buffer, and further converted to directed acyclic

graph and mapped as number of tasks streams into the data

pipeline. Session Window aggregation [18] is used which

dynamically set by the dynamic change in the input stream

and each logical task graph is redeployed as per the structure

of the input. Zookeeper [21] maintains the metadata at the

checkpoints. Job Manager do the task scheduling and

maintains the state information.

Algorithm to schedule stream with SMERAS

Input ← configured stream jobs

 Js = { j1,j2,j3,….jn }
1. # Set all the worker nodes based on resources

availability.

2. # Load jobs into the stream buffer

3. # Set priorities to the jobs and time quantum Tq

B. Gnana Deepthi, Prof. K. Sandhya Rani, Prof. P. Venkata Krishna (2023). SMERAS - State Management with Efficient

Resource Allocation and Scheduling in Big Data Stream Processing Systems .International Journal of Computer

Engineering In Research Trends, 10(4):pp.150-154

© 2023, IJCERT All Rights Reserved 153

4. # Set burst time Bt according to stream speed

5. # Build a pipeline to schedule the jobs Js

6. foreach Job in Js

7. if (Bt < Tq)

8. run job from the pipeline

9. state is updated

10. else

11. run job until Tq expires

12. repeat step 6

13. end if

14. end for

Round robin scheduling pipeline processes the sub tasks

with in specific time intervals [22]. This can moderate the

execution speed and waiting time of the tasks in the stream

buffer dynamically with elastic pipeline. It reduces the

starvation problem of large tasks with minimum waiting

time. Snapshot information of all tasks is passed to next

operator. Here the task scheduler is customizable and

optimizes the resource management in a guaranteed scale.

The scheduling tasks queued into the stream pipeline as

Js. On each worker node jobs loaded according to the load on

the stream buffer that changes dynamically. Priorities and

time quantum Tq assigned to each job in the queue. For each

job, the burst time Bt compared with Tq, later went for

processing and state updated. It will be iterated on the worker

nodes.

Flink’s ProcessFunctions [3] control state and time of

each processing event by storing the state of the new arrival

event and for the future event specific timestamp is

registered. Here, past input is remembered and is used for

influencing the future event processing. Current state is

maintained here for the computing event and result is passed

to the next events. State stored locally and distributed across

cluster instead storing in external storage that guarantees

consistency. Even in failure, state restored to the last

checkpoint and efficient scalability can be achieved.

5. Results & Discussion
The proposed architecture is implemented for the

stateful resource allocation strategy with the window

aggregate based partition protocol. The dataset used here is

the open accessible vehicle detection dataset available in

Kaggle. In this section, the results of experiments are

discussed and compared with the existing scheduling

strategies.

The implementation takes place with the YARN cluster

of 10 machines on the Amazon EC2 cloud and on 64-bit

Cent OS with each having 16 CPU cores, 16 GB RAM and

512 GB SSD and HDD both. For state backend store,

RocksDB out of core locality is used. Stream snapshotting

done in Hadoop HDFS.

The experimental results are showed in the below

figures 4-6. The results specifying the overall performance of

the proposed SMERAS architecture is higher and resource

utilization is improved with 7.8%, 7.6% and 9.4% of the

CPU core and throughput ratio. The latency reduced for each

set of window aggregations. The performance gain is in an

average of 9.6% than the default system.

Fig 4. Latency measured for SMERAS and Flink (default)

with respect to the incoming stream rates.

Fig 5. Throughput is measured with respect to the number of

jobs per each core and the job completion time in mins.

Fig 6. Snapshot Duration measurement in State size.

Overall results of this experiment showing that the

proposed SMERAS architecture for the stateful resource

management compared with the default behavior of the Flink

[19] performance. The elastic window partition for the

stream pipeline getting more accurate results for throughput

0

50

100

150

200

250

300

p1 p2 p3 p4

L
at

en
cy

Flink (Default)

SMERAS

0

50

100

150

200

250

300

350

100 200 300 400 500 600

S
n
ap

sh
o
t

D
u
ra

ti
o
n
 (

se
c.

)

State size (GB)

B. Gnana Deepthi, Prof. K. Sandhya Rani, Prof. P. Venkata Krishna (2023). SMERAS - State Management with Efficient

Resource Allocation and Scheduling in Big Data Stream Processing Systems .International Journal of Computer

Engineering In Research Trends, 10(4):pp.150-154

© 2023, IJCERT All Rights Reserved 154

and latency. High resource utilization is observed for getting

high throughput. And the SMERAS algorithm getting less

completion time for the number of jobs processed.

6. Conclusion
In this work, the stateful operations and resource

scheduling in the data stream processing systems analyzed

efficiently with the proposed architecture SMERAS. It using

the dynamic elastic data pipelines to stream the incoming

events in the application. It producing better results than the

existing researches with high throughput, low latency, and

better resource utilization.

References

[1] Tian, L., & Chandy, K. M. (2006, September). Resource

allocation in streaming environments. In 2006 7th

IEEE/ACM International Conference on Grid Computing

(pp. 270-277). IEEE.

[2] To, Q. C., Soto, J., & Markl, V. (2018). A survey of state

management in big data processing systems. The VLDB

Journal, 27(6), 847-872.

[3] Asyabi, S. E. Toward Workload-Aware State

Management in Streaming Systems.

[4] Langhi, S., Tommasini, R., & Della Valle, E. (2020,

December). Extending kafka streams for complex event

recognition. In 2020 IEEE International Conference on Big

Data (Big Data) (pp. 2190-2197). IEEE.

[5] Fragkoulis, M., Carbone, P., Kalavri, V., & Katsifodimos,

A. (2020). A survey on the evolution of stream processing

systems. arXiv preprint arXiv:2008.00842.

[6] Li, Z., Yu, J., Bian, C., Pu, Y., Wang, Y., Zhang, Y., &

Guo, B. (2020). Flink-er: an elastic resource-scheduling

strategy for processing fluctuating mobile stream data on

flink. Mobile Information Systems, 2020, 1-17.

[7] de Souza, P. R., Matteussi, K. J., dos Anjos, J. C., Dos

Santos, J. D., Geyer, C. F. R., & da Silva Veith, A. (2018,

July). Aten: A dispatcher for big data applications in

heterogeneous systems. In 2018 International Conference on

High Performance Computing & Simulation (HPCS) (pp.

585-592). IEEE.

[8] Jiang, Y., Huang, Z., & Tsang, D. H. (2016). Towards

max-min fair resource allocation for stream big data analytics

in shared clouds. IEEE Transactions on Big Data, 4(1), 130-

137.

[9] Kiruthiga, R., & Akila, D. (2021, January).

Heterogeneous fair resource allocation and scheduling for

big data streams in cloud environments. In 2021 2nd

International Conference on Computation, Automation and

Knowledge Management (ICCAKM) (pp. 128-132). IEEE.

[10] Ahmad, W., Alam, B., & Atman, A. (2021). An energy-

efficient big data workflow scheduling algorithm under

budget constraints for heterogeneous cloud environment. The

Journal of Supercomputing, 77, 11946-11985.

[11] Tang, Z., Du, L., Zhang, X., Yang, L., & Li, K. (2021).

AEML: An acceleration engine for multi-GPU load-

balancing in distributed heterogeneous environment. IEEE

Transactions on Computers, 71(6), 1344-1357.

[12] Ni, X., Li, J., Yu, M., Zhou, W., & Wu, K. L. (2020,

April). Generalizable resource allocation in stream

processing via deep reinforcement learning. In Proceedings

of the AAAI Conference on Artificial Intelligence (Vol. 34,

No. 01, pp. 857-864).

[13] KhudaBukhsh, W. R., Kar, S., Alt, B., Rizk, A., &

Koeppl, H. (2020). Generalized cost-based job scheduling in

very large heterogeneous cluster systems. IEEE Transactions

on Parallel and Distributed Systems, 31(11), 2594-2604.

[14] De Matteis, T., & Mencagli, G. (2017). Parallel patterns

for window-based stateful operators on data streams: an

algorithmic skeleton approach. International Journal of

Parallel Programming, 45(2), 382-401.

[15] Kalavri, V., & Liagouris, J. (2020, July). In support of

workload-aware streaming state management. In Proceedings

of the 12th USENIX Conference on Hot Topics in Storage

and File Systems (pp. 19-19).

[16] Zhao, H., Zheng, Q., Zhang, W., & Wang, J. (2016).

Prediction-based and locality-aware task scheduling for

parallelizing video transcoding over heterogeneous

mapreduce cluster. IEEE Transactions on Circuits and

Systems for Video Technology, 28(4), 1009-1020.

[17] Carbone, P., Fragkoulis, M., Kalavri, V., &

Katsifodimos, A. (2020, June). Beyond analytics: The

evolution of stream processing systems. In Proceedings of

the 2020 ACM SIGMOD international conference on

Management of data (pp. 2651-2658).

[18] Carbone, P., Katsifodimos, A., & Haridi, S. (2019).

Stream Window Aggregation Semantics and Optimization.

[19] Janßen, G., Verbitskiy, I., Renner, T., & Thamsen, L.

(2018, December). Scheduling stream processing tasks on

geo-distributed heterogeneous resources. In 2018 IEEE

International Conference on Big Data (Big Data) (pp. 5159-

5164). IEEE.

[20] Akil, B., Zhou, Y., & Röhm, U. (2017, December). On

the usability of Hadoop MapReduce, Apache Spark &

Apache flink for data science. In 2017 IEEE International

Conference on Big Data (Big Data) (pp. 303-310). IEEE.

[21] Tang, S., He, B., Liu, H., & Lee, B. S. (2016). 9

Resource Management in Big Data Processing Systems. Big

Data Principles and Paradigm.

[22] Stein, O., Blamey, B., Karlsson, J., Sabirsh, A., Spjuth,

O., Hellander, A., & Toor, S. (2020, December). Smart

Resource Management for Data Streaming using an Online

Bin-packing Strategy. In 2020 IEEE International

Conference on Big Data (Big Data) (pp. 2207-2216). IEEE.

