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Abstract: - Recent advances in big data and distributed computing systems having prominent data management 

with low cost of storage and efficient resource scheduling strategies leading reliable and scalable system designs. It 
helps for developing better decision-making systems in the era of Big Data. Speed of data arrival rate demands the 
speed of data processing rate. Existing scenarios uses complex query execution engines in distributed manner to 
process real-time and near real-time streaming data. Data Stream processing systems facing challenges with 
respect to resource management and are looking for the efficient resource scheduling and query execution 
strategies. In this paper, the SMERAS model is proposed and it uses a state full stream management based on a 
pipeline with various scheduling queues for managing streams of data. Experimental results show the performance 
analysis of the proposed system compared with the existing systems. 
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1. Introduction  

Today’s digital era concentrating on the challenges of 

data processing of rapid growing big data from various 

sources like sensors, computer and mobile devices, social 

media, e-commerce portals, business applications etc., To 

process real-life applications, real-time and near real-time 

data is more important than older data [1]. This data most 

probably considers as streams of volume and gives advances 

to the business and real-world applications to develop 

knowledge-based decision-making systems with valuable 

insights. Big Data Processing (BDP) approaches, batch and 

stream-oriented are the prominent fields of processing such 

massive data. MapReduce is the basic batch-oriented 

approach in BDPs. Map Reduce does not supports high-level 

programming and re-use of state in iterations in the 

processing [2]. Stream processing systems can overcome the 

limitations of batch approach and can provide features like 

flexibility, scalable, reliable and fault-tolerance. 

Processing streams of data in real-time is the major 

requirement for the data stream applications. Data streams 

are the basic smallest element or unit in streaming 

applications and flows through the network as potentially 

infinite ordered streams of data. Streams are not affordable to 

store into memory and process from memory as can be 

deployed from the cloud clusters [3]. To increase the 

efficiency and performance of the system, multicore system 

architectures and distributed parallel computing approaches 

must be incorporated in the system design.  Such systems can 

provide greater computing results like throughput and 

latency. More researches proposed different frameworks for 
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data stream processing systems in the field of big data 

computing. 

In this paper, the contributions proposed are the 

implementation of the proposed architecture for stateful 

management of the operations and resource allocation of the 

real-time streams to reduce the starvation situation in the 

scheduling. The architecture considers distributed clusters for 

processing data streams in real-time with stateful operations. 

The remaining sections presented in this paper are as follows. 

Section 2 describes the preliminaries considered for the 

work. Section 3 is presenting the literature review. In section 

4, proposed system architecture is given and the modules in 

the workflow of the system are described. In section 5, the 

results and discussion about the implementation of the 

system are provided. Section 6 containing the conclusion 

about the research work done. 

 

2. Background 

Most of the business applications are providing data-

driven services for the users. The data management 

architectures need to be more consistent and scalable for the 

demand of the decision-making systems. Stream processing 

systems must react faster to the real-world event-driven 

applications [4]. It is adopted in major business fields and 

inspires researches for allowing scale-out and with higher 

throughput and latency. Figure 1 gives the evolutionary 

stages of data processing systems [5].  

  

  

  

  

  

Fig 1. Evolution of Data Processing Systems 

Apache Flink’s [6] scalability is distributed to thousands 

of cores and stand-alone clusters can be connected to various 

open-source resource managers with a full software stack for 

organizing data streams. Its stateful operations make it as top 

in the stream processing applications. Data remembered for 

future computation is state of the application [14]. Data 

processing pipelines integrated with functional programming 

API to process continuous data flow events. 

2.1 State Handling in Flink 

State Management in stream processing systems done in 

stateless and stateful operations. In stateless operation, output 

depends on input and in stateful operation, sequence of 

inputs generates intermediate periodic results maintained in a 

data structure called state [7]. State management in data 

processing systems can be considered with respect to several 

aspects like operations on state, maintenance, sharing of 

state, performance, load balancing and applications of state. 

2.2 Resource Scheduling in Flink 

The resource allocation in the streaming applications is 

the major considerable problem for the performance and 

computational difficulty in big data computing [8]. In 

general, the computation done in distributed manner in the 

stream processing systems [9]. Various approaches are 

proposed for optimising the performance measures like 

reducing the computation time, minimising the resources, 

and efficiently balancing the load on the cluster of nodes. 

Here jobs are periodical and associated with periodical time, 

required resources, and scheduled to get optimum result [10]. 

Through Apache Flink [11], data events not stored in 

memory and executed or integrated dynamically within 

single JVM or within clusters of one or multi-nodes. This 

kind of storage operation is noted as sink means input data 

streams are exported into databases and no output is returned. 

User submitted programs compiled, pre-processed, and 

applied on the datasets as Directed Acyclic Graphs. Default 

query optimizer processes the graphs and minimizes the 

query execution time. Special memory data structures used 

for hashing and sorting leads efficient memory management. 

 

3. Literature Review 
Xiang Ni et al. [12] presented a generic strategy for 

resource allocation, by considered the unobserved data with 

implementing the reinforcement learning. Author considering 

the proposed problem as the NP-complete and using graph 

encoding and graph-aware decoder for getting the optimized 

results than the existing techniques. 

Wasiur R. KhudaBukhsh et. al. [13] studied the 

heterogenous cloud clusters for understanding the job 

scheduling in the big data systems. The authors proposed 

randomised cost-based policy the job scheduling in the big 

data clusters. They achieved scaling in the several server 

buffers by implementing the numerical evaluations in the 

multi-stage systems. 

Tiziano De Matteis et. al. [14] propoed algorithmic 

skeleton for state management in stream processing. The 

authors merged the structured parallelism for getting the 

better performance of throughput and latency in the stream 

processing state management. Multi-core architectures using 

Fastflow framework in the window aggregations of the state 

operations. Window farming, key partitioning and pane 

farming are the modules implemented in this work for doing 

the window partitioning. 

Vasiliki Kalavri et. al. [15] developed workload-aware 

policy for the state management in the stream processing. 
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Here authors focussed on the limitations of the LSM-based 

distributed processing and with experimental results they 

gain higher throughput and latency.  

Hui Zhao et. al. [16] proposed task scheduling algorithm 

for video transcoding. In three steps like data analysation, 

pre-processing and proposal of Job Shop Scheduling, authors 

implemented task scheduling strategy for minimising the 

transcoding time. The results showing the efficient nature of 

the algorithm for better load balancing. It combining two 

existing policies for making a hybrid approach of max-min 

and min-min algorithms. 

Marios Fragkoulis et. al. [17] discussed about the survey 

taken for understanding the evolution of stream processing 

from the past 20 years. Major functional features of stream 

processing are considered for the survey. They are 

categorized as first generation and 2nd generation. 

Requirements, various architectures, disorders in the 

processing, challenges are discussed in their work. 

Paris Carbone et. al. [18] discussed about the 

aggregations on sliding windows. They get feasible results 

for the records came as streams. Sliding windows used for 

handling input. Challenges considered are computing large 

records, and getting throughput. 

Gerrit Janßen et. al. [19] developed an algorithm for 

scheduling the tasks with low latency and feasible 

bandwidth. Proposed algorithm is the search-based method. 

Results are almost 50% reduces the latency that obtained by 

existing algorithms. Fire detection benchmark is considered 

for the job graphs to schedule. Limited bandwidth is used for 

the experimental results. 

 

4. SMERAS Architecture 
Data flow in the Flink’s processing pipeline is denoted 

as a directed acyclic graph. Pipeline's primary building block 

is state since it contains the complete status of the 

computation at any given point. Operator-state and Keyed-

state are the two states maintained in the state management 

and that are reflected as exactly once in the operation update. 

In the keyed state, MapState and ReduceState API’s [20] 

used for doing the mapping and reducing operations with 

key-value operations put and get.  

 

Fig 2. Data Flow Graphs in Stateful operations 

The logical data flow graph G = {T, E} in figure (i), is 

mapped as G* = {T*, E*}, the physical data distribution 

graph showed in figure (ii) where the logical task t in G 

belongs to T ( t ϵ T ) is mapped as set of physical tasks in G* 

belongs to T* (t1, t2,…tn ϵ T). 

 

Fig 3. SMERAS Architecture for State management and 

Resource Allocation 

In this architecture, the input streams are buffered into 

the stream buffer, and further converted to directed acyclic 

graph and mapped as number of tasks streams into the data 

pipeline. Session Window aggregation [18] is used which 

dynamically set by the dynamic change in the input stream 

and each logical task graph is redeployed as per the structure 

of the input. Zookeeper [21] maintains the metadata at the 

checkpoints. Job Manager do the task scheduling and 

maintains the state information. 

 

Algorithm to schedule stream with SMERAS 

 

Input ← configured stream jobs 

  Js = { j1,j2,j3,….jn } 
1.  # Set all the worker nodes based on resources     

availability. 

2.  # Load jobs into the stream buffer 

3.  # Set priorities to the jobs and time quantum Tq 
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4.  # Set burst time Bt according to stream speed 

5.  # Build a pipeline to schedule the jobs Js 

6.  foreach Job in Js 

7.   if (Bt < Tq)  

8.    run job from the pipeline 

9.            state is updated 

10.    else       

11.         run job until Tq expires 

12.         repeat step 6 

13.  end if 

14. end for 

Round robin scheduling pipeline processes the sub tasks 

with in specific time intervals [22]. This can moderate the 

execution speed and waiting time of the tasks in the stream 

buffer dynamically with elastic pipeline. It reduces the 

starvation problem of large tasks with minimum waiting 

time. Snapshot information of all tasks is passed to next 

operator. Here the task scheduler is customizable and 

optimizes the resource management in a guaranteed scale. 

The scheduling tasks queued into the stream pipeline as 

Js. On each worker node jobs loaded according to the load on 

the stream buffer that changes dynamically. Priorities and 

time quantum Tq assigned to each job in the queue. For each 

job, the burst time Bt compared with Tq, later went for 

processing and state updated. It will be iterated on the worker 

nodes. 

Flink’s ProcessFunctions [3] control state and time of 

each processing event by storing the state of the new arrival 

event and for the future event specific timestamp is 

registered. Here, past input is remembered and is used for 

influencing the future event processing. Current state is 

maintained here for the computing event and result is passed 

to the next events. State stored locally and distributed across 

cluster instead storing in external storage that guarantees 

consistency. Even in failure, state restored to the last 

checkpoint and efficient scalability can be achieved. 

 

5. Results & Discussion 
The proposed architecture is implemented for the 

stateful resource allocation strategy with the window 

aggregate based partition protocol. The dataset used here is 

the open accessible vehicle detection dataset available in 

Kaggle. In this section, the results of experiments are 

discussed and compared with the existing scheduling 

strategies. 

The implementation takes place with the YARN cluster 

of 10 machines on the Amazon EC2 cloud and on 64-bit 

Cent OS with each having 16 CPU cores, 16 GB RAM and 

512 GB SSD and HDD both. For state backend store, 

RocksDB out of core locality is used. Stream snapshotting 

done in Hadoop HDFS. 

The experimental results are showed in the below 

figures 4-6. The results specifying the overall performance of 

the proposed SMERAS architecture is higher and resource 

utilization is improved with 7.8%, 7.6% and 9.4% of the 

CPU core and throughput ratio. The latency reduced for each 

set of window aggregations. The performance gain is in an 

average of 9.6% than the default system. 

  

 

 

 

 

 

 

 

 

Fig 4. Latency measured for SMERAS and Flink (default) 

with respect to the incoming stream rates. 

 

 

Fig 5. Throughput is measured with respect to the number of 

jobs per each core and the job completion time in mins. 

 

 

 

 

 

 

 

 

Fig 6. Snapshot Duration measurement in State size. 

Overall results of this experiment showing that the 

proposed SMERAS architecture for the stateful resource 

management compared with the default behavior of the Flink 

[19] performance. The elastic window partition for the 

stream pipeline getting more accurate results for throughput 
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and latency. High resource utilization is observed for getting 

high throughput. And the SMERAS algorithm getting less 

completion time for the number of jobs processed.   

 

6. Conclusion 
In this work, the stateful operations and resource 

scheduling in the data stream processing systems analyzed 

efficiently with the proposed architecture SMERAS. It using 

the dynamic elastic data pipelines to stream the incoming 

events in the application. It producing better results than the 

existing researches with high throughput, low latency, and 

better resource utilization. 
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