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Abstract: In this paper we have penetrate an era of Big Data. Through better analysis of the large volumes of data that are becoming 

available, there is the potential for making faster advances in many scientific disciplines and improving the profitability and success of many 

enterprises. However, many technical challenges described in this paper must be addressed before this potential can be realized fully. The 

challenges include not just the obvious issues of scale, but also heterogeneity, lack of structure, error-handling, privacy, timeliness, 

provenance, and visualization, at all stages of the analysis pipeline from data acquisition to result interpretation. 
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——————————————————— 

1. INTRODUCTION 

In a broad range of application areas, data is being 

collected at unprecedented scale. Decisions that 

previously were based on guesswork, or on 

painstakingly constructed models of reality, can now 

be made based on the data itself. Such Big Data 

analysis now drives nearly every aspect of our modern 

society, including mobile services, retail, 

manufacturing, financial services, life sciences, and 

physical sciences. Scientific research has been 

revolutionized by Big Data .The Sloan Digital Sky 

Survey has today become a central resource for 

astronomers the world over. The field of Astronomy is 

being transformed from one where taking pictures of 

the sky was a large part of an astronomer’s job to one 

where the pictures are all in a database already and the 

astronomer’s task is to find interesting objects and 

phenomena in the database. In the biological sciences, 

there is now a well-established tradition of depositing 

scientific data into a public repository, and also of 

creating public databases for use by other scientists. In 

fact, there is an entire discipline of bioinformatics that 

is largely devoted to the curation and analysis of such 

data. As technology advances, particularly with the 

advent of Next Generation Sequencing, the size and 

number of experimental data sets available is 

increasing exponentially. Big Data has the potential to 

revolutionize not just research, but also education. A 

recent detailed quantitative comparison of different 

approaches taken by 35 charter schools in NYC has 

found that one of the top five policies correlated with 

measurable academic effectiveness was the use of data 

to guide instruction. Imagine a world in which we have 

access to a huge database where we collect every 

detailed measure of every student's academic 

performance. This data could be used to design the 

most effective approaches to education, starting from 

reading, writing, and math, to advanced, college-level, 

courses.  

We are far from having access to such data, but there 

are powerful trends in this direction. In particular, 

there is a strong trend for massive Web deployment of 

educational activities, and this will generate an 

increasingly large amount of detailed data about 

students' performance. It is widely believed that the 

use of information technology can reduce the cost of 

healthcare while improving its quality, by making care 

more preventive and personalized and basing it on 

more extensive (home-based) continuous monitoring. 

McKinsey estimates a savings of 300 billion dollars 

every year in the US alone. In a similar vein, there have 
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been persuasive cases made for the value of Big Data 

for urban planning (through fusion of high-fidelity 

geographical data), intelligent transportation (through 

analysis and visualization of live and detailed road 

network data), environmental modeling (through 

sensor networks ubiquitously collecting data), energy 

saving (through unveiling patterns of use), smart 

materials (through the new materials genome initiative, 

computational social sciences 2 (a new methodology 

fast growing in popularity because of the dramatically 

lowered cost of obtaining data) [LP+2009], financial 

systemic risk analysis (through integrated analysis of a 

web of contracts to find dependencies between 

financial entities), homeland security (through analysis 

of social networks and financial transactions of possible 

terrorists), computer security (through analysis of 

logged information and other events, known as 

Security Information and Event Management (SIEM)), 

and so on. In 2010, enterprises and users stored more 

than 13 Exabyte’s of new data; this is over 50,000 times 

the data in the Library of Congress. The potential value 

of global personal location data is estimated to be $700 

billion to end users, and it can result in an up to 50% 

decrease in product development and assembly costs, 

according to a recent McKinsey report [1]. McKinsey 

predicts an equally great effect of Big Data in 

employment, where 140,000-190,000 workers with 

―deep analytical‖ experience will be needed in the US; 

furthermore, 1.5 million managers will need to become 

data-literate. Not surprisingly, the recent PCAST report 

on Networking and IT R&D [4] identified Big Data as a 

―research frontier‖ that can ―accelerate progress across 

a broad range of priorities.‖ Even popular news media 

now appreciates the value of Big Data as evidenced by 

coverage in the Economist [6], the New York Times [8], 

and National Public Radio [4, 8].  

While the potential benefits of Big Data are real and 

significant, and some initial successes have already 

been achieved (such as the Sloan Digital Sky Survey), 

there remain many technical challenges that must be 

addressed to fully realize this potential. The sheer size 

of the data, of course, is a major challenge, and is the 

one that is most easily recognized. However, there are 

others. Industry analysis companies like to point out 

that there are challenges not just in Volume, but also in 

Variety and Velocity [4], and that companies should 

not focus on just the first of these. By Variety, they 

usually mean heterogeneity of data types, 

representation, and semantic interpretation. By 

Velocity, they mean both the rate at which data arrive 

and the time in which it must be acted upon. While 

these three are important, this short list fails to include 

additional important requirements such as privacy and 

usability. The analysis of Big Data involves multiple 

distinct phases as shown in the figure below, each of 

which introduces challenges. Many people 

unfortunately focus just on the analysis/modeling 

phase: while that phase is crucial, it is of little use 

without the other phases of the data analysis pipeline. 

Even in the analysis phase, which has received much 

attention, there are poorly understood complexities in 

the context of multi-tenanted clusters where several 

users’ programs run concurrently. Many significant 

challenges extend beyond the analysis phase. For 

example, Big Data has to be managed in context, which 

may be noisy, heterogeneous and not include an 

upfront model.  

Doing so raises the need to track provenance and to 

handle uncertainty and error: topics that are crucial to 

success, and yet rarely mentioned in the same breath as 

Big Data. Similarly, the questions to the data analysis 

pipeline will typically not all be laid out in advance. 

We may need to figure out good questions based on 

the data. Doing this will require smarter systems and 

also better support for user interaction with the 

analysis pipeline. In fact, we currently have a major 

bottleneck in the number of people empowered to ask 

questions of the data and analyze it [10]. We can 

drastically increase this number by supporting 3 many 

levels of engagement with the data, not all requiring 

deep database expertise. Solutions to problems such as 

this will not come from incremental improvements to 

business as usual such as industry may make on its 

own. Rather, they require us to fundamentally rethink 

how we manage data analysis. 
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Fig 1. The Big data analysis pipeline. 

Fortunately, existing computational techniques can be 

applied, either as is or with some extensions, to at least 

some aspects of the Big Data problem. For example, 

relational databases rely on the notion of logical data 

independence: users can think about what they want to 

compute, while the system (with skilled engineers 

designing those systems) determines how to compute it 

efficiently. Similarly, the SQL standard and the 

relational data model provide a uniform, powerful 

language to express many query needs and, in 

principle, allows customers to choose between vendors, 

increasing competition. The challenge ahead of us is to 

combine these healthy features of prior systems as we 

devise novel solutions to the many new challenges of 

Big Data. In this paper, we consider each of the boxes 

in the figure above, and discuss both what has already 

been done and what challenges remain as we seek to 

exploit Big Data. We begin by considering the five 

stages in the pipeline, then move on to the five cross-

cutting challenges, and end with a discussion of the 

architecture of the overall system that combines all 

these functions. 

2. PHASES IN THE PROCESSING PIPELINE 

 2.1 Data Acquisition and Recording 

 Big Data does not arise out of a vacuum: it is recorded 

from some data generating source. For example, 

consider our ability to sense and observe the world 

around us, from the heart rate of an elderly citizen, and 

presence of toxins in the air we breathe, to the planned 

square kilometer array telescope, which will produce 

up to 1 million terabytes of raw data per day. Similarly, 

scientific experiments and simulations can easily 

produce petabytes of data today. Much of this data is 

of no interest, and it can be filtered and compressed by 

orders of magnitude. One challenge is to define these 

filters in such a way that they do not discard useful 

information. For example, suppose one sensor reading 

differs substantially from the rest: it is likely to be due 

to the sensor being faulty, but how can we be sure that 

it is not an artifact that deserves attention? In addition, 

the data collected by these sensors most often are 

spatially and temporally correlated (e.g., traffic sensors 

on the same road segment). We need research in the 

science of data reduction that can intelligently process 

this raw data to a size that its users can handle while 

not missing the needle in the haystack. Furthermore, 
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we require ―on-line‖ analysis techniques that can 

process such streaming data on the fly, since we cannot 

afford to store first and reduce afterward. The second 

big challenge is to automatically generate the right 

metadata to describe what data is recorded and how it 

is recorded and measured. For example, in scientific 

experiments, considerable detail regarding specific 

experimental conditions and procedures may be 

required to be able to interpret the results correctly, 

and it is important that such metadata be recorded 

with observational data. Metadata acquisition systems 

can minimize the human burden in recording 

metadata. Another important issue here is data 

provenance. Recording information about the data at 

its birth is not useful unless this information can be 

interpreted and carried along through the data analysis 

pipeline. For example, a processing error at one step 

can render subsequent analysis useless; with suitable 

provenance, we can easily identify all subsequent 

processing that dependent on this step. Thus we need 

research both into generating suitable metadata and 

into data systems that carry the provenance of data and 

its metadata through data analysis pipelines. 

2.2 Information Extraction and Cleaning  

Frequently, the information collected will not be in a 

format ready for analysis. For example, consider the 

collection of electronic health records in a hospital, 

comprising transcribed dictations from several 

physicians, structured data from sensors and 

measurements (possibly with some associated 

uncertainty), and image data such as x-rays. We cannot 

leave the data in this form and still effectively analyze 

it. Rather we require an information extraction process 

that pulls out the required information from the 

underlying sources and expresses it in a structured 

form suitable for analysis. Doing this correctly and 

completely is a continuing technical challenge. Note 

that this data also includes images and will in the 

future include video; such extraction is often highly 

application dependent (e.g., what you want to pull out 

of an MRI is very different from what you would pull 

out of a picture of the stars, or a surveillance photo). In 

addition, due to the ubiquity of surveillance cameras 

and popularity of GPSenabled mobile phones, cameras, 

and other portable devices, rich and high fidelity 

location and trajectory (i.e., movement in space) data 

can also be extracted. We are used to thinking of Big 

Data as always telling us the truth, but this is actually 

far from reality. For example, patients may choose to 

hide risky behavior and caregivers may sometimes 

misdiagnose a condition; patients may also 

inaccurately recall the name of a drug or even that they 

ever took it, leading to missing information in (the 

history portion of) their medical record. Existing work 

on data cleaning assumes well-recognized constraints 

on valid data or well-understood error models; for 

many emerging Big Data domains these do not exist. 

2.3 Data Integration, Aggregation, and 

Representation 

Given the heterogeneity of the flood of data, it is not 

enough merely to record it and throw it into a 

repository. Consider, for example, data from a range of 

scientific experiments. If we just have a bunch of data 

sets in a repository, it is unlikely anyone will ever be 

able to find, let alone reuse, any of this data. With 

adequate metadata, there is some hope, but even so, 

challenges will remain due to differences in 

experimental details and in data record structure. Data 

analysis is considerably more challenging than simply 

locating, identifying, understanding, and citing data. 

For effective large-scale analysis all of this has to 

happen in a completely automated manner. This 

requires differences in data structure and semantics to 

be expressed in forms that are computer 

understandable, and then ―robotically‖ resolvable. 

There is a strong body of work in data integration that 

can provide some of the answers. However, 

considerable additional work is required to achieve 

automated error-free difference resolution. Even for 

simpler analyses that depend on only one data set, 

there remains an important question of suitable 

database design. Usually, there will be many 

alternative ways in which to store the same 

information. Certain designs will have advantages over 

others for certain purposes, and possibly drawbacks for 

other purposes. Witness, for instance, the tremendous 

variety in the structure of bioinformatics databases 

with information regarding substantially similar 
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entities, such as genes. Database design is today an art, 

and is carefully executed in the enterprise context by 

highly-paid professionals. We must enable other 

professionals, such as domain scientists, to create 

effective database designs, either through devising 

tools to assist them in the design process or through 

forgoing the design process completely and developing 

techniques so that databases can be used effectively in 

the absence of intelligent database design. 

2.4 Query Processing, Data Modeling, and 

Analysis 

Methods for querying and mining Big Data are 

fundamentally different from traditional statistical 

analysis on small samples. Big Data is often noisy, 

dynamic, heterogeneous, inter-related and 

untrustworthy. Nevertheless, even noisy Big Data 

could be more valuable than tiny samples because 

general statistics obtained from frequent patterns and 

correlation analysis usually overpower individual 

fluctuations and often disclose more reliable hidden 

patterns and knowledge. Further, interconnected Big 

Data forms large heterogeneous information networks, 

with which information redundancy can be explored to 

compensate for missing data, to crosscheck conflicting 

cases, to validate trustworthy relationships, to disclose 

inherent clusters, and to uncover hidden relationships 

and models. Mining requires integrated, cleaned, 

trustworthy, and efficiently accessible data, declarative 

query and mining interfaces, scalable mining 

algorithms, and big-data computing environments. At 

the same time, data mining itself can also be used to 

help improve the quality and trustworthiness of the 

data, understand its semantics, and provide intelligent 

querying functions. As noted previously, real-life 

medical records have errors, are heterogeneous, and 

frequently are distributed across multiple systems. The 

value of Big Data analysis in health care, to take just 

one example application domain, can only be realized 

if it can be applied robustly under these difficult 

conditions. On the flip side, knowledge developed 

from data can help in correcting errors and removing 

ambiguity. For example, a physician may write ―DVT‖ 

as the diagnosis for a patient. This abbreviation is 

commonly used for both ―deep vein thrombosis‖ and 

―diverticulitis,‖ two very different medical conditions. 

A knowledge-base constructed from related data can 

use associated symptoms or medications to determine 

which of two the physician meant. Big Data is also 

enabling the next generation of interactive data 

analysis with real-time answers. In the future, queries 

towards Big Data will be automatically generated for 

content creation on websites, to populate hot-lists or 

recommendations, and to provide an ad hoc analysis of 

the value of a data set to decide whether to store or to 

discard it. Scaling complex query processing 

techniques to terabytes while enabling interactive 

response times is a major open research problem today. 

A problem with current Big Data analysis is the lack of 

coordination between database systems, which host the 

data and provide SQL querying, with analytics 

packages that perform various forms of non-SQL 

processing, such as data mining and statistical 

analyses. Today’s analysts are impeded by a tedious 

process of exporting data from the database, 

performing a non-SQL process and bringing the data 

back. This is an obstacle to carrying over the interactive 

elegance of the first generation of SQLdriven OLAP 

systems into the data mining type of analysis that is in 

increasing demand. A tight coupling between 

declarative query languages and the functions of such 

packages will benefit both expressiveness and 

performance of the analysis. 

2.5 Interpretation 

Having the ability to analyze Big Data is of limited 

value if users cannot understand the analysis. 

Ultimately, a decision-maker, provided with the result 

of analysis, has to interpret these results. This 

interpretation cannot happen in a vacuum. Usually, it 

involves examining all the assumptions made and 

retracing the analysis. Furthermore, as we saw above, 

there are many possible sources of error: computer 

systems can have bugs, models almost always have 

assumptions, and results can be based on erroneous 

data. For all of these reasons, no responsible user will 

cede authority to the computer system. Rather she will 

try to understand, and verify, the results produced by 

the computer. The computer system must make it easy 

for her to do so. This is particularly a challenge with 
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Big Data due to its complexity. There are often crucial 

assumptions behind the data recorded. Analytical 

pipelines can often involve multiple steps, again with 

assumptions built in. The recent mortgage-related 

shock to the financial system dramatically underscored 

the need for such decision-maker diligence -- rather 

than accept the stated solvency of a financial institution 

at face value, a decision-maker has to examine critically 

the many assumptions at multiple stages of analysis. In 

short, it is rarely enough to provide just the results. 

Rather, one must provide supplementary information 

that explains how each result was derived, and based 

upon precisely what inputs.  

Such supplementary information is called the 

provenance of the (result) data. By studying how best 

to capture, store, and query provenance, in conjunction 

with techniques to capture adequate metadata, we can 

create an infrastructure to provide users with the 

ability both to interpret analytical results obtained and 

to repeat the analysis with different assumptions, 

parameters, or data sets. Systems with a rich palette of 

visualizations become important in conveying to the 

users the results of the queries in a way that is best 

understood in the particular domain. Whereas early 

business intelligence systems’ users were content with 

tabular presentations, today’s analysts need to pack 

and present results in powerful visualizations that 

assist interpretation, and support user collaboration as 

discussed in Sec. 3.5. Furthermore, with a few clicks the 

user should be able to drill down into each piece of 

data that she sees and understand its provenance, 

which is a key feature to understanding the data. That 

is, users need to be able to see not just the results, but 

also understand why they are seeing those results. 

However, raw provenance, particularly regarding the 

phases in the analytics pipeline, is likely to be too 

technical for many users to grasp completely. One 

alternative is to enable the users to ―play‖ with the 

steps in the analysis – make small changes to the 

pipeline, for example, or modify values for some 

parameters. The users can then view the results of 

these incremental changes. By these means, users can 

develop an intuitive feeling for the analysis and also 

verify that it performs as expected in corner cases. 

Accomplishing this requires the system to provide 

convenient facilities for the user to specify analyses. 

Declarative specification, discussed in Sec. 4, is one 

component of such a system. 

3. CHALLENGES IN BIG DATA ANALYSIS 

Having described the multiple phases in the Big Data 

analysis pipeline, we now turn to some common 

challenges that underlie many, and sometimes all, of 

these phases. These are shown as five boxes in the 

second row of Fig. 1. 

3.1 Heterogeneity and Incompleteness 

When humans consume information, a great deal of 

heterogeneity is comfortably tolerated. In fact, the 

nuance and richness of natural language can provide 

valuable depth. However, machine analysis algorithms 

expect homogeneous data, and cannot understand 

nuance. In consequence, data must be carefully 

structured as a first step in (or prior to) data analysis. 

Consider, for example, a patient who has multiple 

medical procedures at a hospital. We could create one 

record per medical procedure or laboratory test, one 

record for the entire hospital stay, or one record for all 

lifetime hospital interactions of this patient. With 

anything other than the first design, the number of 

medical procedures and lab tests per record would be 

different for each patient. The three design choices 

listed have successively less structure and, conversely, 

successively greater variety. Greater structure is likely 

to be required by many (traditional) data analysis 

systems. However, the less structured design is likely 

to be more effective for many purposes – for example 

questions relating to disease progression over time will 

require an expensive join operation with the first two 

designs, but can be avoided with the latter. However, 

computer systems work most efficiently if they can 

store multiple items that are all identical in size and 

structure. Efficient representation, access, and analysis 

of semi-structured data require further work. Consider 

an electronic health record database design that has 

fields for birth date, occupation, and blood type for 

each patient. What do we do if one or more of these 

pieces of information is not provided by a patient? 

Obviously, the health record is still placed in the 
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database, but with the corresponding attribute values 

being set to NULL. A data analysis that looks to 

classify patients by, say, occupation, must take into 

account patients for which this information is not 

known. Worse, these patients with unknown 

occupations can be ignored in the analysis only if we 

have reason to believe that they are otherwise 

statistically similar to the patients with known 

occupation for the analysis performed. For example, if 

unemployed patients are more likely to hide their 

employment status, analysis results may be skewed in 

that it considers a more employed population mix than 

exists, and hence potentially one that has differences in 

occupation-related health-profiles. Even after data 

cleaning and error correction, some incompleteness 

and some errors in data are likely to remain. This 

incompleteness and these errors must be managed 

during data analysis. Doing this correctly is a 

challenge. Recent work on managing probabilistic data 

suggests one way to make progress.  

3.2 Scale 

 Of course, the first thing anyone thinks of with Big 

Data is its size. After all, the word ―big‖ is there in the 

very name. Managing large and rapidly increasing 

volumes of data has been a challenging issue for many 

decades. In the past, this challenge was mitigated by 

processors getting faster, following Moore’s law, to 

provide us with the resources needed to cope with 

increasing volumes of data. But, there is a fundamental 

shift underway now: data volume is scaling faster than 

compute resources, and CPU speeds are static. First, 

over the last five years the processor technology has 

made a dramatic shift - rather than processors doubling 

their clock cycle frequency every 18-24 months, now, 

due to power constraints, clock speeds have largely 

stalled and processors are being built with increasing 

numbers of cores. In the past, large data processing 

systems had to worry about parallelism across nodes in 

a cluster; now, one has to deal with parallelism within 

a single node. Unfortunately, parallel data processing 

techniques that were applied in the past for processing 

data across nodes don’t directly apply for intra-node 

parallelism, since the architecture looks very different; 

for example, there are many more hardware resources 

such as processor caches and processor memory 

channels that are shared across cores in a single node. 

Furthermore, the move towards packing multiple 

sockets (each with 10s of cores) adds another level of 

complexity for intra-node parallelism. Finally, with 

predictions of ―dark silicon‖, namely that power 

consideration will likely in the future prohibit us from 

using all of the hardware in the system continuously, 

data processing systems will likely have to actively 

manage the power consumption of the processor. 

These unprecedented changes require us to rethink 

how we design, build and operate data processing 

components. The second dramatic shift that is 

underway is the move towards cloud computing, 

which now aggregates multiple disparate workloads 

with varying performance goals (e.g. interactive 

services demand that the data processing engine return 

back an answer within a fixed response time cap) into 

very large clusters.  

This level of sharing of resources on expensive and 

large clusters requires new ways of determining how to 

run and execute data processing jobs so that we can 

meet the goals of each workload cost-effectively, and to 

deal with system failures, which occur more frequently 

as we operate on larger and larger clusters (that are 

required to deal with the rapid growth in data 

volumes). This places a premium on declarative 

approaches to expressing programs, even those doing 

complex machine learning tasks, since global 

optimization across multiple users’ programs is 

necessary for good overall performance. Reliance on 

user-driven program optimizations is likely to lead to 

poor cluster utilization, since users are unaware of 

other users’ programs. System-driven holistic 

optimization requires programs to be sufficiently 

transparent, e.g., as in relational database systems, 

where declarative query languages are designed with 

this in mind. A third dramatic shift that is underway is 

the transformative change of the traditional I/O 

subsystem. For many decades, hard disk drives 

(HDDs) were used to store persistent data. HDDs had 

far slower random IO performance than sequential IO 

performance, and data processing engines formatted 

their data and designed their query processing 

methods to ―work around‖ this limitation. But, HDDs 
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are increasingly being replaced by solid state drives 

today, and other technologies such as Phase Change 

Memory are around the corner. These newer storage 

technologies do not have the same large spread in 

performance between the sequential and random I/O 

performance, which requires a rethinking of how we 

design storage subsystems for data processing systems. 

Implications of this changing storage subsystem 

potentially touch every aspect of data processing, 

including query processing algorithms, query 

scheduling, database design, concurrency control 

methods and recovery methods. 

3.3 Timeliness  

The flip side of size is speed. The larger the data set to 

be processed, the longer it will take to analyze. The 

design of a system that effectively deals with size is 

likely also to result in a system that can process a given 

size of data set faster. However, it is not just this speed 

that is usually meant when one speaks of Velocity in 

the context of Big Data. Rather, there is an acquisition 

rate challenge as described in Sec. 2.1, and a timeliness 

challenge described next. There are many situations in 

which the result of the analysis is required 

immediately. For example, if a fraudulent credit card 

transaction is suspected, it should ideally be flagged 

before the transaction is completed – potentially 

preventing the transaction from taking place at all. 

Obviously, a full analysis of a user’s purchase history is 

not likely to be feasible in real-time. Rather, we need to 

develop partial results in advance so that a small 

amount of incremental computation with new data can 

be used to arrive at a quick determination. Given a 

large data set, it is often necessary to find elements in it 

that meet a specified criterion. In the course of data 

analysis, this sort of search is likely to occur repeatedly. 

Scanning the entire data set to find suitable elements is 

obviously impractical. Rather, index structures are 

created in advance to permit finding qualifying 

elements quickly. The problem is that each index 

structure is designed to support only some classes of 

criteria. With new analyses desired using Big Data, 

there are new types of criteria specified, and a need to 

devise new index structures to support such criteria. 

For example, consider a traffic management system 

with information regarding thousands of vehicles and 

local hot spots on roadways. The system may need to 

predict potential congestion points along a route 

chosen by a user, and suggest alternatives. Doing so 

requires evaluating multiple spatial proximity queries 

working with the trajectories of moving objects. New 

index structures are required to support such queries. 

Designing such structures becomes particularly 

challenging when the data volume is growing rapidly 

and the queries have tight response time limits. 

3.4 Privacy  

The privacy of data is another huge concern, and one 

that increases in the context of Big Data. For electronic 

health records, there are strict laws governing what can 

and cannot be done. For other data, regulations, 

particularly in the US, are less forceful. However, there 

is great public fear regarding the inappropriate use of 

personal data, particularly through linking of data 

from multiple sources. Managing privacy is effectively 

both a technical and a sociological problem, which 

must be addressed jointly from both perspectives to 

realize the promise of big data. Consider, for example, 

data gleaned from location-based services. These new 

architectures require a user to share his/her location 

with the service provider, resulting in obvious privacy 

concerns. Note that hiding the user’s identity alone 

without hiding her location would not properly 

address these privacy concerns. An attacker or a 

(potentially malicious) location-based server can infer 

the identity of the query source from its (subsequent) 

location information. For example, a user’s location 

information can be tracked through several stationary 

connection points (e.g., cell towers). After a while, the 

user eaves ―a trail of packet crumbs‖ which could be 

associated to a certain residence or office location and 

thereby used to determine the user’s identity. Several 

other types of surprisingly private information such as 

health issues (e.g., presence in a cancer treatment 

center) or religious preferences (e.g., presence in a 

church) can also be revealed by just observing 

anonymous users’ movement and usage pattern over 

time. In general, Barabási et al. showed that there is a 

close correlation between people’s identities and their 

movement patterns [Gon2008]. Note that hiding a user 
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location is much more challenging than hiding his/her 

identity. This is because with location-based services, 

the location of the user is needed for a successful data 

access or data collection, while the identity of the user 

is not necessary. 

3.5 Human Collaboration  

In spite of the tremendous advances made in 

computational analysis, there remain many patterns 

that humans can easily detect but computer algorithms 

have a hard time finding. Indeed, CAPTCHAs exploit 

precisely this fact to tell human web users apart from 

computer programs. Ideally, analytics for Big Data will 

not be all computational – rather it will be designed 

explicitly to have a human in the loop. The new sub-

field of visual analytics is attempting to do this, at least 

with respect to the modeling and analysis phase in the 

pipeline. There is similar value to human input at all 

stages of the analysis pipeline. In today’s complex 

world, it often takes multiple experts from different 

domains to really understand what is going on. A Big 

Data analysis system must support input from multiple 

human experts, and shared exploration of results. 

These multiple experts may be separated in space and 

time when it is too expensive to assemble an entire 

team together in one room. The data system has to 

accept this distributed expert input, and support their 

collaboration. A popular new method of harnessing 

human ingenuity to solve problems is through 

crowdsourcing. Wikipedia, the online encyclopedia, is 

perhaps the best known example of crowd-sourced 

data. We are relying upon information provided by 

unvetted strangers. Most often, what they say is 

correct. However, we should expect there to be 

individuals who have other motives and abilities – 

some may have a reason to provide false information in 

an intentional attempt to mislead. While most such 

errors will be detected and corrected by others in the 

crowd, we need technologies to facilitate this. We also 

need a framework to use in analysis of such crowd-

sourced data with conflicting statements. As humans, 

we can look at reviews of a restaurant, some of which 

are positive and others critical, and come up with a 

summary assessment based on which we can decide 

whether to try eating there. We need computers to be 

able to do the equivalent. The issues of uncertainty and 

error become even more pronounced in a specific type 

of crowd-sourcing, termed participatory-sensing. In 

this case, every person with a mobile phone can act as a 

multi-modal sensor collecting various types of data 

instantaneously (e.g., picture, video, audio, location, 

time, speed, direction, acceleration). The extra 

challenge here is the inherent uncertainty of the data 

collection devices. The fact that collected data are 

probably spatially and temporally correlated can be 

exploited to better assess their correctness. When 

crowd-sourced data is obtained for hire, such as with 

―Mechanical Turks,‖ much of the data created may be 

with a primary objective of getting it done quickly 

rather than correctly. This is yet another error model, 

which must be planned for explicitly when it applies. 

4. SYSTEM ARCHITECTURE 

Companies today already use, and appreciate the value 

of, business intelligence. Business data is analyzed for 

many purposes: a company may perform system log 

analytics and social media analytics for risk 

assessment, customer retention, brand management, 

and so on. Typically, such varied tasks have been 

handled by separate systems, even if each system 

includes common steps of information extraction, data 

cleaning, relational-like processing (joins, group-by, 

aggregation), statistical and predictive modeling, and 

appropriate exploration and visualization tools as 

shown in Fig. 1. With Big Data, the use of separate 

systems in this fashion becomes prohibitively 

expensive given the large size of the data sets. The 

expense is due not only to the cost of the systems 

themselves, but also the time to load the data into 

multiple systems. In consequence, Big Data has made it 

necessary to run heterogeneous workloads on a single 

infrastructure that is sufficiently flexible to handle all 

these workloads. The challenge here is not to build a 

system that is ideally suited for all processing tasks. 

Instead, the need is for the underlying system 

architecture to be flexible enough that the components 

built on top of it for expressing the various kinds of 

processing tasks can tune it to efficiently run these 

different workloads. The effects of scale on the physical 

architecture were considered in Sec 3.2. In this section, 
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we focus on the programmability requirements. If 

users are to compose and build complex analytical 

pipelines over Big Data, it is essential that they have 

appropriate high-level primitives to specify their needs 

in such flexible systems.  

The MapReduce framework has been tremendously 

valuable, but is only a first step. Even declarative 

languages that exploit it, such as Pig Latin, are at a 

rather low level when it comes to complex analysis 

tasks. Similar declarative specifications are required at 

higher levels to meet the programmability and 

composition needs of these analysis pipelines. Besides 

the basic technical need, there is a strong business 

imperative as well. Businesses typically will outsource 

Big Data processing, or many aspects of it. Declarative 

specifications are required to enable technically 

meaningful service level agreements, since the point of 

the out-sourcing is to specify precisely what task will 

be performed without going into details of how to do 

it. Declarative specification is needed not just for the 

pipeline composition, but also for the individual 

operations themselves. Each operation (cleaning, 

extraction, modeling etc.) potentially runs on a very 

large data set. Furthermore, each operation itself is 

sufficiently complex that there are many choices and 

optimizations possible in how it is implemented. In 

databases, there is considerable work on optimizing 

individual operations, such as joins. It is well-known 

that there can be multiple orders of magnitude 

difference in the cost of two different ways to execute 

the same query. Fortunately, the user does not have to 

make this choice – the database system makes it for 

her. In the case of Big Data, these optimizations may be 

more complex because not all operations will be I/O 

intensive as in databases. Some operations may be, but 

others may be CPU intensive, or a mix. So standard 

database optimization techniques cannot directly be 

used. However, it should be possible to develop new 

techniques for Big Data operations inspired by 

database techniques. The very fact that Big Data 

analysis typically involves multiple phases highlights a 

challenge that arises routinely in practice: production 

systems must run complex analytic pipelines, or 

workflows, at routine intervals, e.g., hourly or daily. 

New data must be incrementally accounted for, taking 

into account the results of prior analysis and pre-

existing data. And of course, provenance must be 

preserved, and must include the phases in the analytic 

pipeline. Current systems offer little to no support for 

such Big Data pipelines, and this is in itself a 

challenging objective. 

5. CONCLUSION 

 We have entered an era of Big Data. Through better 

analysis of the large volumes of data that are becoming 

available, there is the potential for making faster 

advances in many scientific disciplines and improving 

the profitability and success of many enterprises. 

However, many technical challenges described in this 

paper must be addressed before this potential can be 

realized fully. The challenges include not just the 

obvious issues of scale, but also heterogeneity, lack of 

structure, error-handling, privacy, timeliness, 

provenance, and visualization, at all stages of the 

analysis pipeline from data acquisition to result 

interpretation. These technical challenges are common 

across a large variety of application domains, and 

therefore not cost-effective to address in the context of 

one domain alone. Furthermore, these challenges will 

require transformative solutions, and will not be 

addressed naturally by the next generation of 

industrial products. We must support and encourage 

fundamental research towards addressing these 

technical challenges if we are to achieve the promised 

benefits of Big Data. 
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