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Abstract: In this paper we have penetrate an era of Big Data. Through better analysis of the large volumes of data that are becoming
available, there is the potential for making faster advances in many scientific disciplines and improving the profitability and success of many
enterprises. However, many technical challenges described in this paper must be addressed before this potential can be realized fully. The
challenges include not just the obvious issues of scale, but also heterogeneity, lack of structure, error-handling, privacy, timeliness,
provenance, and visualization, at all stages of the analysis pipeline from data acquisition to result interpretation.
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1. INTRODUCTION

In a broad range of application areas, data is being
collected at unprecedented scale. Decisions that
previously were based on guesswork, or on
painstakingly constructed models of reality, can now
be made based on the data itself. Such Big Data
analysis now drives nearly every aspect of our modern
society, including mobile services, retail,
manufacturing, financial services, life sciences, and
physical sciences. Scientific research has been
revolutionized by Big Data .The Sloan Digital Sky
Survey has today become a central resource for
astronomers the world over. The field of Astronomy is
being transformed from one where taking pictures of
the sky was a large part of an astronomer’s job to one
where the pictures are all in a database already and the
astronomer’s task is to find interesting objects and
phenomena in the database. In the biological sciences,
there is now a well-established tradition of depositing
scientific data into a public repository, and also of
creating public databases for use by other scientists. In
fact, there is an entire discipline of bioinformatics that
is largely devoted to the curation and analysis of such
data. As technology advances, particularly with the

advent of Next Generation Sequencing, the size and

IJCERT © 2015

number of experimental data sets available is
increasing exponentially. Big Data has the potential to
revolutionize not just research, but also education. A
recent detailed quantitative comparison of different
approaches taken by 35 charter schools in NYC has
found that one of the top five policies correlated with
measurable academic effectiveness was the use of data
to guide instruction. Imagine a world in which we have
access to a huge database where we collect every
detailed measure of every student's academic
performance. This data could be used to design the
most effective approaches to education, starting from
reading, writing, and math, to advanced, college-level,
courses.

We are far from having access to such data, but there
are powerful trends in this direction. In particular,
there is a strong trend for massive Web deployment of
educational activities, and this will generate an
increasingly large amount of detailed data about
students' performance. It is widely believed that the
use of information technology can reduce the cost of
healthcare while improving its quality, by making care
more preventive and personalized and basing it on
more extensive (home-based) continuous monitoring.
McKinsey estimates a savings of 300 billion dollars
every year in the US alone. In a similar vein, there have
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been persuasive cases made for the value of Big Data
for urban planning (through fusion of high-fidelity
geographical data), intelligent transportation (through
analysis and visualization of live and detailed road
network data), environmental modeling (through
sensor networks ubiquitously collecting data), energy
saving (through unveiling patterns of use), smart
materials (through the new materials genome initiative,
computational social sciences 2 (a new methodology
fast growing in popularity because of the dramatically
lowered cost of obtaining data) [LP+2009], financial
systemic risk analysis (through integrated analysis of a
web of contracts to find dependencies between
financial entities), homeland security (through analysis
of social networks and financial transactions of possible
terrorists), computer security (through analysis of
logged information and other events, known as
Security Information and Event Management (SIEM)),
and so on. In 2010, enterprises and users stored more
than 13 Exabyte’s of new data; this is over 50,000 times
the data in the Library of Congress. The potential value
of global personal location data is estimated to be $700
billion to end users, and it can result in an up to 50%
decrease in product development and assembly costs,
according to a recent McKinsey report [1]. McKinsey
predicts an equally great effect of Big Data in
employment, where 140,000-190,000 workers with
“deep analytical” experience will be needed in the US;
furthermore, 1.5 million managers will need to become
data-literate. Not surprisingly, the recent PCAST report
on Networking and IT R&D [4] identified Big Data as a
“research frontier” that can “accelerate progress across
a broad range of priorities.” Even popular news media
now appreciates the value of Big Data as evidenced by
coverage in the Economist [6], the New York Times [8],
and National Public Radio [4, 8].

While the potential benefits of Big Data are real and
significant, and some initial successes have already
been achieved (such as the Sloan Digital Sky Survey),
there remain many technical challenges that must be
addressed to fully realize this potential. The sheer size
of the data, of course, is a major challenge, and is the
one that is most easily recognized. However, there are
others. Industry analysis companies like to point out
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that there are challenges not just in Volume, but also in
Variety and Velocity [4], and that companies should
not focus on just the first of these. By Variety, they
usually mean heterogeneity of data types,
representation, and semantic interpretation. By
Velocity, they mean both the rate at which data arrive
and the time in which it must be acted upon. While
these three are important, this short list fails to include
additional important requirements such as privacy and
usability. The analysis of Big Data involves multiple
distinct phases as shown in the figure below, each of
which  introduces  challenges. Many  people
unfortunately focus just on the analysis/modeling
phase: while that phase is crucial, it is of little use
without the other phases of the data analysis pipeline.
Even in the analysis phase, which has received much
attention, there are poorly understood complexities in
the context of multi-tenanted clusters where several
users’ programs run concurrently. Many significant
challenges extend beyond the analysis phase. For
example, Big Data has to be managed in context, which
may be noisy, heterogeneous and not include an

upfront model.

Doing so raises the need to track provenance and to
handle uncertainty and error: topics that are crucial to
success, and yet rarely mentioned in the same breath as
Big Data. Similarly, the questions to the data analysis
pipeline will typically not all be laid out in advance.
We may need to figure out good questions based on
the data. Doing this will require smarter systems and
also better support for user interaction with the
analysis pipeline. In fact, we currently have a major
bottleneck in the number of people empowered to ask
questions of the data and analyze it [10]. We can
drastically increase this number by supporting 3 many
levels of engagement with the data, not all requiring
deep database expertise. Solutions to problems such as
this will not come from incremental improvements to
business as usual such as industry may make on its
own. Rather, they require us to fundamentally rethink
how we manage data analysis.
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Fig 1. The Big data analysis pipeline.

Fortunately, existing computational techniques can be
applied, either as is or with some extensions, to at least
some aspects of the Big Data problem. For example,
relational databases rely on the notion of logical data
independence: users can think about what they want to
compute, while the system (with skilled engineers
designing those systems) determines how to compute it
efficiently. Similarly, the SQL standard and the
relational data model provide a uniform, powerful
language to express many query needs and, in
principle, allows customers to choose between vendors,
increasing competition. The challenge ahead of us is to
combine these healthy features of prior systems as we
devise novel solutions to the many new challenges of
Big Data. In this paper, we consider each of the boxes
in the figure above, and discuss both what has already
been done and what challenges remain as we seek to
exploit Big Data. We begin by considering the five
stages in the pipeline, then move on to the five cross-
cutting challenges, and end with a discussion of the
architecture of the overall system that combines all
these functions.

2. PHASES IN THE PROCESSING PIPELINE
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2.1 Data Acquisition and Recording

Big Data does not arise out of a vacuum: it is recorded
from some data generating source. For example,
consider our ability to sense and observe the world
around us, from the heart rate of an elderly citizen, and
presence of toxins in the air we breathe, to the planned
square kilometer array telescope, which will produce
up to 1 million terabytes of raw data per day. Similarly,
scientific experiments and simulations can easily
produce petabytes of data today. Much of this data is
of no interest, and it can be filtered and compressed by
orders of magnitude. One challenge is to define these
filters in such a way that they do not discard useful
information. For example, suppose one sensor reading
differs substantially from the rest: it is likely to be due
to the sensor being faulty, but how can we be sure that
it is not an artifact that deserves attention? In addition,
the data collected by these sensors most often are
spatially and temporally correlated (e.g., traffic sensors
on the same road segment). We need research in the
science of data reduction that can intelligently process
this raw data to a size that its users can handle while
not missing the needle in the haystack. Furthermore,
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we require “on-line” analysis techniques that can
process such streaming data on the fly, since we cannot
afford to store first and reduce afterward. The second
big challenge is to automatically generate the right
metadata to describe what data is recorded and how it
is recorded and measured. For example, in scientific
experiments, considerable detail regarding specific
experimental conditions and procedures may be
required to be able to interpret the results correctly,
and it is important that such metadata be recorded
with observational data. Metadata acquisition systems
can minimize the human burden in recording
metadata. Another important issue here is data
provenance. Recording information about the data at
its birth is not useful unless this information can be
interpreted and carried along through the data analysis
pipeline. For example, a processing error at one step
can render subsequent analysis useless; with suitable
provenance, we can easily identify all subsequent
processing that dependent on this step. Thus we need
research both into generating suitable metadata and
into data systems that carry the provenance of data and
its metadata through data analysis pipelines.

2.2 Information Extraction and Cleaning

Frequently, the information collected will not be in a
format ready for analysis. For example, consider the
collection of electronic health records in a hospital,
comprising transcribed dictations from several
physicians, structured data from sensors and
measurements (possibly with some associated
uncertainty), and image data such as x-rays. We cannot
leave the data in this form and still effectively analyze
it. Rather we require an information extraction process
that pulls out the required information from the
underlying sources and expresses it in a structured
form suitable for analysis. Doing this correctly and
completely is a continuing technical challenge. Note
that this data also includes images and will in the
future include video; such extraction is often highly
application dependent (e.g., what you want to pull out
of an MRI is very different from what you would pull
out of a picture of the stars, or a surveillance photo). In
addition, due to the ubiquity of surveillance cameras
and popularity of GPSenabled mobile phones, cameras,
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and other portable devices, rich and high fidelity
location and trajectory (i.e., movement in space) data
can also be extracted. We are used to thinking of Big
Data as always telling us the truth, but this is actually
far from reality. For example, patients may choose to
hide risky behavior and caregivers may sometimes
misdiagnose a condition; patients may also
inaccurately recall the name of a drug or even that they
ever took it, leading to missing information in (the
history portion of) their medical record. Existing work
on data cleaning assumes well-recognized constraints
on valid data or well-understood error models; for
many emerging Big Data domains these do not exist.

2.3 Data
Representation

Integration, Aggregation, and

Given the heterogeneity of the flood of data, it is not
enough merely to record it and throw it into a
repository. Consider, for example, data from a range of
scientific experiments. If we just have a bunch of data
sets in a repository, it is unlikely anyone will ever be
able to find, let alone reuse, any of this data. With
adequate metadata, there is some hope, but even so,
challenges will remain due to differences in
experimental details and in data record structure. Data
analysis is considerably more challenging than simply
locating, identifying, understanding, and citing data.
For effective large-scale analysis all of this has to
happen in a completely automated manner. This
requires differences in data structure and semantics to
be expressed in forms that are computer
understandable, and then “robotically” resolvable.
There is a strong body of work in data integration that
can provide some of the answers. However,
considerable additional work is required to achieve
automated error-free difference resolution. Even for
simpler analyses that depend on only one data set,
there remains an important question of suitable
database design. Usually, there will be many
alternative ways in which to store the same
information. Certain designs will have advantages over
others for certain purposes, and possibly drawbacks for
other purposes. Witness, for instance, the tremendous
variety in the structure of bioinformatics databases
with information regarding substantially similar
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entities, such as genes. Database design is today an art,
and is carefully executed in the enterprise context by
highly-paid professionals. We must enable other
professionals, such as domain scientists, to create
effective database designs, either through devising
tools to assist them in the design process or through
forgoing the design process completely and developing
techniques so that databases can be used effectively in
the absence of intelligent database design.

2.4 Query Processing, Data Modeling, and
Analysis

Methods for querying and mining Big Data are
fundamentally different from traditional statistical
analysis on small samples. Big Data is often noisy,
dynamic, heterogeneous, inter-related and
untrustworthy. Nevertheless, even noisy Big Data
could be more valuable than tiny samples because
general statistics obtained from frequent patterns and
correlation analysis usually overpower individual
fluctuations and often disclose more reliable hidden
patterns and knowledge. Further, interconnected Big
Data forms large heterogeneous information networks,
with which information redundancy can be explored to
compensate for missing data, to crosscheck conflicting
cases, to validate trustworthy relationships, to disclose
inherent clusters, and to uncover hidden relationships
and models. Mining requires integrated, cleaned,
trustworthy, and efficiently accessible data, declarative
query and mining interfaces, scalable mining
algorithms, and big-data computing environments. At
the same time, data mining itself can also be used to
help improve the quality and trustworthiness of the
data, understand its semantics, and provide intelligent
querying functions. As noted previously, real-life
medical records have errors, are heterogeneous, and
frequently are distributed across multiple systems. The
value of Big Data analysis in health care, to take just
one example application domain, can only be realized
if it can be applied robustly under these difficult
conditions. On the flip side, knowledge developed
from data can help in correcting errors and removing
ambiguity. For example, a physician may write “DVT”
as the diagnosis for a patient. This abbreviation is
commonly used for both “deep vein thrombosis” and
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“diverticulitis,” two very different medical conditions.
A knowledge-base constructed from related data can
use associated symptoms or medications to determine
which of two the physician meant. Big Data is also
enabling the next generation of interactive data
analysis with real-time answers. In the future, queries
towards Big Data will be automatically generated for
content creation on websites, to populate hot-lists or
recommendations, and to provide an ad hoc analysis of
the value of a data set to decide whether to store or to
discard it. Scaling complex query processing
techniques to terabytes while enabling interactive
response times is a major open research problem today.
A problem with current Big Data analysis is the lack of
coordination between database systems, which host the
data and provide SQL querying, with analytics
packages that perform various forms of non-SQL
processing, such as data mining and statistical
analyses. Today’s analysts are impeded by a tedious
process of exporting data from the database,
performing a non-SQL process and bringing the data
back. This is an obstacle to carrying over the interactive
elegance of the first generation of SQLdriven OLAP
systems into the data mining type of analysis that is in
increasing demand. A tight coupling between
declarative query languages and the functions of such
packages will benefit both expressiveness and
performance of the analysis.

2.5 Interpretation

Having the ability to analyze Big Data is of limited
value if wusers cannot understand the analysis.
Ultimately, a decision-maker, provided with the result
of analysis, has to interpret these results. This
interpretation cannot happen in a vacuum. Usually, it
involves examining all the assumptions made and
retracing the analysis. Furthermore, as we saw above,
there are many possible sources of error: computer
systems can have bugs, models almost always have
assumptions, and results can be based on erroneous
data. For all of these reasons, no responsible user will
cede authority to the computer system. Rather she will
try to understand, and verify, the results produced by
the computer. The computer system must make it easy
for her to do so. This is particularly a challenge with
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Big Data due to its complexity. There are often crucial
assumptions behind the data recorded. Analytical
pipelines can often involve multiple steps, again with
assumptions built in. The recent mortgage-related
shock to the financial system dramatically underscored
the need for such decision-maker diligence -- rather
than accept the stated solvency of a financial institution
at face value, a decision-maker has to examine critically
the many assumptions at multiple stages of analysis. In
short, it is rarely enough to provide just the results.
Rather, one must provide supplementary information
that explains how each result was derived, and based
upon precisely what inputs.

Such supplementary information is called the
provenance of the (result) data. By studying how best
to capture, store, and query provenance, in conjunction
with techniques to capture adequate metadata, we can
create an infrastructure to provide users with the
ability both to interpret analytical results obtained and
to repeat the analysis with different assumptions,
parameters, or data sets. Systems with a rich palette of
visualizations become important in conveying to the
users the results of the queries in a way that is best
understood in the particular domain. Whereas early
business intelligence systems’ users were content with
tabular presentations, today’s analysts need to pack
and present results in powerful visualizations that
assist interpretation, and support user collaboration as
discussed in Sec. 3.5. Furthermore, with a few clicks the
user should be able to drill down into each piece of
data that she sees and understand its provenance,
which is a key feature to understanding the data. That
is, users need to be able to see not just the results, but
also understand why they are seeing those results.
However, raw provenance, particularly regarding the
phases in the analytics pipeline, is likely to be too
technical for many users to grasp completely. One
alternative is to enable the users to “play” with the
steps in the analysis - make small changes to the
pipeline, for example, or modify values for some
parameters. The users can then view the results of
these incremental changes. By these means, users can
develop an intuitive feeling for the analysis and also
verify that it performs as expected in corner cases.
Accomplishing this requires the system to provide
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convenient facilities for the user to specify analyses.
Declarative specification, discussed in Sec. 4, is one
component of such a system.

3. CHALLENGES IN BIG DATA ANALYSIS

Having described the multiple phases in the Big Data
analysis pipeline, we now turn to some common
challenges that underlie many, and sometimes all, of
these phases. These are shown as five boxes in the
second row of Fig. 1.

3.1 Heterogeneity and Incompleteness

When humans consume information, a great deal of
heterogeneity is comfortably tolerated. In fact, the
nuance and richness of natural language can provide
valuable depth. However, machine analysis algorithms
expect homogeneous data, and cannot understand
nuance. In consequence, data must be -carefully
structured as a first step in (or prior to) data analysis.
Consider, for example, a patient who has multiple
medical procedures at a hospital. We could create one
record per medical procedure or laboratory test, one
record for the entire hospital stay, or one record for all
lifetime hospital interactions of this patient. With
anything other than the first design, the number of
medical procedures and lab tests per record would be
different for each patient. The three design choices
listed have successively less structure and, conversely,
successively greater variety. Greater structure is likely
to be required by many (traditional) data analysis
systems. However, the less structured design is likely
to be more effective for many purposes - for example
questions relating to disease progression over time will
require an expensive join operation with the first two
designs, but can be avoided with the latter. However,
computer systems work most efficiently if they can
store multiple items that are all identical in size and
structure. Efficient representation, access, and analysis
of semi-structured data require further work. Consider
an electronic health record database design that has
fields for birth date, occupation, and blood type for
each patient. What do we do if one or more of these
pieces of information is not provided by a patient?
Obviously, the health record is still placed in the
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database, but with the corresponding attribute values
being set to NULL. A data analysis that looks to
classify patients by, say, occupation, must take into
account patients for which this information is not
known. Worse, these patients with unknown
occupations can be ignored in the analysis only if we
have reason to believe that they are otherwise
statistically similar to the patients with known
occupation for the analysis performed. For example, if
unemployed patients are more likely to hide their
employment status, analysis results may be skewed in
that it considers a more employed population mix than
exists, and hence potentially one that has differences in
occupation-related health-profiles. Even after data
cleaning and error correction, some incompleteness
and some errors in data are likely to remain. This
incompleteness and these errors must be managed
during data analysis. Doing this correctly is a
challenge. Recent work on managing probabilistic data
suggests one way to make progress.

3.2 Scale

Of course, the first thing anyone thinks of with Big
Data is its size. After all, the word “big” is there in the
very name. Managing large and rapidly increasing
volumes of data has been a challenging issue for many
decades. In the past, this challenge was mitigated by
processors getting faster, following Moore’s law, to
provide us with the resources needed to cope with
increasing volumes of data. But, there is a fundamental
shift underway now: data volume is scaling faster than
compute resources, and CPU speeds are static. First,
over the last five years the processor technology has
made a dramatic shift - rather than processors doubling
their clock cycle frequency every 18-24 months, now,
due to power constraints, clock speeds have largely
stalled and processors are being built with increasing
numbers of cores. In the past, large data processing
systems had to worry about parallelism across nodes in
a cluster; now, one has to deal with parallelism within
a single node. Unfortunately, parallel data processing
techniques that were applied in the past for processing
data across nodes don’t directly apply for intra-node
parallelism, since the architecture looks very different;
for example, there are many more hardware resources
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such as processor caches and processor memory
channels that are shared across cores in a single node.
Furthermore, the move towards packing multiple
sockets (each with 10s of cores) adds another level of
complexity for intra-node parallelism. Finally, with
predictions of “dark silicon”, namely that power
consideration will likely in the future prohibit us from
using all of the hardware in the system continuously,
data processing systems will likely have to actively
manage the power consumption of the processor.
These unprecedented changes require us to rethink
how we design, build and operate data processing
components. The second dramatic shift that is
underway is the move towards cloud computing,
which now aggregates multiple disparate workloads
with varying performance goals (e.g. interactive
services demand that the data processing engine return
back an answer within a fixed response time cap) into
very large clusters.

This level of sharing of resources on expensive and
large clusters requires new ways of determining how to
run and execute data processing jobs so that we can
meet the goals of each workload cost-effectively, and to
deal with system failures, which occur more frequently
as we operate on larger and larger clusters (that are
required to deal with the rapid growth in data
volumes). This places a premium on declarative
approaches to expressing programs, even those doing
complex machine learning tasks, since global
optimization across multiple users’ programs is
necessary for good overall performance. Reliance on
user-driven program optimizations is likely to lead to
poor cluster utilization, since users are unaware of
other wusers’ programs. System-driven holistic
optimization requires programs to be sufficiently
transparent, e.g., as in relational database systems,
where declarative query languages are designed with
this in mind. A third dramatic shift that is underway is
the transformative change of the traditional I/O
subsystem. For many decades, hard disk drives
(HDDs) were used to store persistent data. HDDs had
far slower random IO performance than sequential 10
performance, and data processing engines formatted
their data and designed their query processing
methods to “work around” this limitation. But, HDDs
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are increasingly being replaced by solid state drives
today, and other technologies such as Phase Change
Memory are around the corner. These newer storage
technologies do not have the same large spread in
performance between the sequential and random I/O
performance, which requires a rethinking of how we
design storage subsystems for data processing systems.
Implications of this changing storage subsystem
potentially touch every aspect of data processing,
including query processing algorithms, query
scheduling, database design, concurrency control
methods and recovery methods.

3.3 Timeliness

The flip side of size is speed. The larger the data set to
be processed, the longer it will take to analyze. The
design of a system that effectively deals with size is
likely also to result in a system that can process a given
size of data set faster. However, it is not just this speed
that is usually meant when one speaks of Velocity in
the context of Big Data. Rather, there is an acquisition
rate challenge as described in Sec. 2.1, and a timeliness
challenge described next. There are many situations in
which the result of the analysis is required
immediately. For example, if a fraudulent credit card
transaction is suspected, it should ideally be flagged
before the transaction is completed - potentially
preventing the transaction from taking place at all.
Obviously, a full analysis of a user’s purchase history is
not likely to be feasible in real-time. Rather, we need to
develop partial results in advance so that a small
amount of incremental computation with new data can
be used to arrive at a quick determination. Given a
large data set, it is often necessary to find elements in it
that meet a specified criterion. In the course of data
analysis, this sort of search is likely to occur repeatedly.
Scanning the entire data set to find suitable elements is
obviously impractical. Rather, index structures are
created in advance to permit finding qualifying
elements quickly. The problem is that each index
structure is designed to support only some classes of
criteria. With new analyses desired using Big Data,
there are new types of criteria specified, and a need to
devise new index structures to support such criteria.
For example, consider a traffic management system
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with information regarding thousands of vehicles and
local hot spots on roadways. The system may need to
predict potential congestion points along a route
chosen by a user, and suggest alternatives. Doing so
requires evaluating multiple spatial proximity queries
working with the trajectories of moving objects. New
index structures are required to support such queries.
Designing such structures becomes particularly
challenging when the data volume is growing rapidly
and the queries have tight response time limits.

3.4 Privacy

The privacy of data is another huge concern, and one
that increases in the context of Big Data. For electronic
health records, there are strict laws governing what can
and cannot be done. For other data, regulations,
particularly in the US, are less forceful. However, there
is great public fear regarding the inappropriate use of
personal data, particularly through linking of data
from multiple sources. Managing privacy is effectively
both a technical and a sociological problem, which
must be addressed jointly from both perspectives to
realize the promise of big data. Consider, for example,
data gleaned from location-based services. These new
architectures require a user to share his/her location
with the service provider, resulting in obvious privacy
concerns. Note that hiding the user’s identity alone
without hiding her location would not properly
address these privacy concerns. An attacker or a
(potentially malicious) location-based server can infer
the identity of the query source from its (subsequent)
location information. For example, a user’s location
information can be tracked through several stationary
connection points (e.g., cell towers). After a while, the
user eaves “a trail of packet crumbs” which could be
associated to a certain residence or office location and
thereby used to determine the user’s identity. Several
other types of surprisingly private information such as
health issues (e.g., presence in a cancer treatment
center) or religious preferences (e.g., presence in a
church) can also be revealed by just observing
anonymous users’ movement and usage pattern over
time. In general, Barabasi et al. showed that there is a
close correlation between people’s identities and their
movement patterns [Gon2008]. Note that hiding a user
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location is much more challenging than hiding his/her
identity. This is because with location-based services,
the location of the user is needed for a successful data
access or data collection, while the identity of the user
is not necessary.

3.5 Human Collaboration

In spite of the tremendous advances made in
computational analysis, there remain many patterns
that humans can easily detect but computer algorithms
have a hard time finding. Indeed, CAPTCHAs exploit
precisely this fact to tell human web users apart from
computer programs. Ideally, analytics for Big Data will
not be all computational - rather it will be designed
explicitly to have a human in the loop. The new sub-
field of visual analytics is attempting to do this, at least
with respect to the modeling and analysis phase in the
pipeline. There is similar value to human input at all
stages of the analysis pipeline. In today’s complex
world, it often takes multiple experts from different
domains to really understand what is going on. A Big
Data analysis system must support input from multiple
human experts, and shared exploration of results.
These multiple experts may be separated in space and
time when it is too expensive to assemble an entire
team together in one room. The data system has to
accept this distributed expert input, and support their
collaboration. A popular new method of harnessing
human ingenuity to solve problems is through
crowdsourcing. Wikipedia, the online encyclopedia, is
perhaps the best known example of crowd-sourced
data. We are relying upon information provided by
unvetted strangers. Most often, what they say is
correct. However, we should expect there to be
individuals who have other motives and abilities -
some may have a reason to provide false information in
an intentional attempt to mislead. While most such
errors will be detected and corrected by others in the
crowd, we need technologies to facilitate this. We also
need a framework to use in analysis of such crowd-
sourced data with conflicting statements. As humans,
we can look at reviews of a restaurant, some of which
are positive and others critical, and come up with a
summary assessment based on which we can decide
whether to try eating there. We need computers to be

IJCERT © 2015

able to do the equivalent. The issues of uncertainty and
error become even more pronounced in a specific type
of crowd-sourcing, termed participatory-sensing. In
this case, every person with a mobile phone can act as a
multi-modal sensor collecting various types of data
instantaneously (e.g., picture, video, audio, location,
time, speed, direction, acceleration). The extra
challenge here is the inherent uncertainty of the data
collection devices. The fact that collected data are
probably spatially and temporally correlated can be
exploited to better assess their correctness. When
crowd-sourced data is obtained for hire, such as with
“Mechanical Turks,” much of the data created may be
with a primary objective of getting it done quickly
rather than correctly. This is yet another error model,
which must be planned for explicitly when it applies.

4. SYSTEM ARCHITECTURE

Companies today already use, and appreciate the value
of, business intelligence. Business data is analyzed for
many purposes: a company may perform system log
analytics and social media analytics for risk
assessment, customer retention, brand management,
and so on. Typically, such varied tasks have been
handled by separate systems, even if each system
includes common steps of information extraction, data
cleaning, relational-like processing (joins, group-by,
aggregation), statistical and predictive modeling, and
appropriate exploration and visualization tools as
shown in Fig. 1. With Big Data, the use of separate
systems in this fashion becomes prohibitively
expensive given the large size of the data sets. The
expense is due not only to the cost of the systems
themselves, but also the time to load the data into
multiple systems. In consequence, Big Data has made it
necessary to run heterogeneous workloads on a single
infrastructure that is sufficiently flexible to handle all
these workloads. The challenge here is not to build a
system that is ideally suited for all processing tasks.
Instead, the need is for the underlying system
architecture to be flexible enough that the components
built on top of it for expressing the various kinds of
processing tasks can tune it to efficiently run these
different workloads. The effects of scale on the physical
architecture were considered in Sec 3.2. In this section,
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we focus on the programmability requirements. If
users are to compose and build complex analytical
pipelines over Big Data, it is essential that they have
appropriate high-level primitives to specify their needs
in such flexible systems.

The MapReduce framework has been tremendously
valuable, but is only a first step. Even declarative
languages that exploit it, such as Pig Latin, are at a
rather low level when it comes to complex analysis
tasks. Similar declarative specifications are required at
higher levels to meet the programmability and
composition needs of these analysis pipelines. Besides
the basic technical need, there is a strong business
imperative as well. Businesses typically will outsource
Big Data processing, or many aspects of it. Declarative
specifications are required to enable technically
meaningful service level agreements, since the point of
the out-sourcing is to specify precisely what task will
be performed without going into details of how to do
it. Declarative specification is needed not just for the
pipeline composition, but also for the individual
operations themselves. Each operation (cleaning,
extraction, modeling etc.) potentially runs on a very
large data set. Furthermore, each operation itself is
sufficiently complex that there are many choices and
optimizations possible in how it is implemented. In
databases, there is considerable work on optimizing
individual operations, such as joins. It is well-known
that there can be multiple orders of magnitude
difference in the cost of two different ways to execute
the same query. Fortunately, the user does not have to
make this choice - the database system makes it for
her. In the case of Big Data, these optimizations may be
more complex because not all operations will be I/O
intensive as in databases. Some operations may be, but
others may be CPU intensive, or a mix. So standard
database optimization techniques cannot directly be
used. However, it should be possible to develop new
techniques for Big Data operations inspired by
database techniques. The very fact that Big Data
analysis typically involves multiple phases highlights a
challenge that arises routinely in practice: production
systems must run complex analytic pipelines, or
workflows, at routine intervals, e.g., hourly or daily.
New data must be incrementally accounted for, taking
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into account the results of prior analysis and pre-
existing data. And of course, provenance must be
preserved, and must include the phases in the analytic
pipeline. Current systems offer little to no support for
such Big Data pipelines, and this is in itself a
challenging objective.

5. CONCLUSION

We have entered an era of Big Data. Through better
analysis of the large volumes of data that are becoming
available, there is the potential for making faster
advances in many scientific disciplines and improving
the profitability and success of many enterprises.
However, many technical challenges described in this
paper must be addressed before this potential can be
realized fully. The challenges include not just the
obvious issues of scale, but also heterogeneity, lack of
structure, error-handling, privacy, timeliness,
provenance, and visualization, at all stages of the
analysis pipeline from data acquisition to result
interpretation. These technical challenges are common
across a large variety of application domains, and
therefore not cost-effective to address in the context of
one domain alone. Furthermore, these challenges will
require transformative solutions, and will not be
addressed naturally by the next generation of
industrial products. We must support and encourage
fundamental research towards addressing these
technical challenges if we are to achieve the promised

benefits of Big Data.
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