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Abstract: Autonomous robotic systems must efficiently adapt to dynamic environments and generalize across tasks to be 
effective in real-world applications. However, traditional reinforcement learning (RL) models face significant challenges, 
including the need for extensive retraining, reliance on large task-specific datasets, and slow adaptation times. To address 
these issues, this paper proposes a novel meta-learning-based framework that leverages Long Short-Term Memory (LSTM) 
networks and LiDAR sensor data to enable robots to generalize across tasks and quickly adapt to new environments with 
minimal retraining. Despite challenges such as handling high-dimensional sensory inputs like LiDAR and the computational 
complexity of LSTM networks, the framework integrates few-shot learning to overcome data limitations and employs a dual 
reward function to balance task-specific performance with long-term generalization. The proposed system achieves a task 
success rate of 93.2%, significantly outperforming traditional RL models (85.7%) and static task-specific models (78.4%). 
Additionally, it demonstrates superior path efficiency, with an average of 85.2%, compared to 78.9% for RL models. The 
system adapts to new tasks in an average of 9.5 seconds, far faster than RL approaches, which require 23.7 seconds on 
average. Moreover, the meta-learning model requires smaller parameter updates (Δθ = 0.012) than traditional RL (Δθ = 
0.021), indicating more efficient learning. Despite the challenges of handling complex sensor data and ensuring scalability, 
these results demonstrate the potential of meta-learning to significantly improve task generalization, adaptability, and 
computational efficiency in autonomous robotic systems. Future work will explore solutions to further optimize scalability 
and enhance the system's robustness in more complex environments. 

Keywords: Meta-learning, Autonomous Navigation, LiDAR Sensor, Few-Shot Learning, LSTM, Task Generalization, 
Reinforcement Learning 

1 Introduction 
Autonomous robotic systems have seen rapid 

advancements in recent years, especially in domains such as 

manufacturing, healthcare, logistics, and exploration. 

Robots that can efficiently navigate dynamic environments, 

adapt to new tasks, and make real-time decisions are critical 

to the future of intelligent systems. However, one of the key 

challenges in developing autonomous robots is enabling 

them to generalize across tasks and adapt quickly to new 

environments. Traditional approaches, such as 

reinforcement learning (RL), are often hindered by their 

need for extensive retraining and large amounts of task-

specific data, which limits their adaptability and scalability 

in rapidly changing environments [1], [2], [3]. Meta-

learning offers a promising solution by enabling robots to 

learn how to learn, allowing for faster adaptation and 

improved generalization with minimal retraining [4], [5]. 

Meta-learning, also known as "learning to learn," is a 

method in which a model learns from previous tasks and 

applies that knowledge to new, unseen tasks. It allows a 

system to quickly adapt to novel situations, which is 

essential for robotic applications in dynamic environments 

where tasks frequently change [6], [7]. One of the key 

benefits of meta-learning is its ability to perform few-shot 

learning, wherein the system can adapt to new tasks with 

only a few examples. This capability is particularly useful 

in scenarios where large datasets are impractical or 

unavailable, making meta-learning an attractive option for 

real-world robotics [8], [9]. 

LiDAR (Light Detection and Ranging) technology has 

become a popular sensor modality for robotic navigation 

due to its ability to generate accurate 3D point clouds of the 

environment. LiDAR sensors are crucial for detecting 

obstacles and enabling robots to navigate through complex 

environments [10], [11]. However, using LiDAR data with 

traditional RL-based models poses several challenges. 

These models typically require large amounts of data and 

long training times to learn how to navigate different 

environments, limiting their real-time adaptability. To 

address these limitations, this research integrates LiDAR 
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sensor data with a meta-learning framework to enable 

robots to generalize across tasks and adapt quickly to new 

environments [12]. 

The key contributions of this paper are as follows: 

1. We propose a meta-learning-based framework 

that leverages LSTM-based sequential learning 

and few-shot learning to enable robots to adapt to 

new tasks and environments with minimal 

retraining. 

2. We integrate LiDAR sensor data into the meta-

learning framework, demonstrating the model’s 

ability to navigate dynamic environments by 

efficiently processing point cloud data. 

3. We present a comprehensive performance 

evaluation, showing that the system achieves a 

task success rate of 93.2% and outperforms 

traditional RL models in terms of path efficiency 

and adaptation time. 

4. We conduct a comparative analysis of the meta-

learning framework against traditional RL and 

static task-specific models, illustrating the 

significant improvements in adaptation speed, 

generalization, and reward optimization. 

This research builds upon a rich body of work in meta-

learning and robotic navigation. Finn et al. [13] introduced 

the Model-Agnostic Meta-Learning (MAML) algorithm, a 

key innovation in the field of meta-learning that enables 

rapid adaptation to new tasks. Vinyals et al. [14] extended 

the concept of meta-learning by introducing Matching 

Networks, which further enhanced the system’s ability to 

learn from limited data, a core feature of few-shot learning. 

The integration of LSTM (Long Short-Term Memory) 

networks into meta-learning systems, as demonstrated by 

Hochreiter and Schmidhuber [15], has enabled robots to 

process sequential decision-making tasks by retaining 

critical information from past experiences. Andrychowicz et 

al. [16] also demonstrated how gradient-based learning 

models like LSTM can be optimized using meta-learning 

principles. 

In robotic navigation, Cadena et al. [17] and Biber and 

Strasser [18] explored the use of LiDAR data for 

Simultaneous Localization and Mapping (SLAM), showing 

how LiDAR data can be leveraged for precise mapping and 

obstacle detection. However, their approaches rely heavily 

on pre-trained models or static task-specific systems, which 

limit adaptability. Levine et al. [19] and Kendall et al. [20] 

explored reinforcement learning for robotic control, but 

their methods require extensive retraining for each new task, 

making them impractical for rapidly changing 

environments. In contrast, meta-learning approaches such 

as those developed by Finn et al. [21] and Ravi and 

Larochelle [22] have demonstrated how robots can achieve 

better task generalization and faster adaptation with fewer 

training samples. 

This paper is structured as follows: In Section II, we 

review related work in traditional RL models, meta-

learning, and robotic navigation. Section III details the 

proposed meta-learning framework, describing the 

integration of LiDAR sensor data and the use of LSTM 

networks for sequential decision-making. In Section IV, we 

present the experimental setup and performance evaluation 

of the system, comparing it against traditional RL 

approaches. Section V discusses the results, limitations, and 

future work, while Section VI concludes the paper by 

summarizing the key findings and contributions. 

This research addresses the challenges of adaptability 

and generalization in robotic navigation by combining the 

strengths of meta-learning and LiDAR-based perception 

systems, paving the way for more robust, scalable, and 

adaptable robotic systems in dynamic and unpredictable 

environments. 

2  Literature Review 
In recent years, significant research has been conducted 

to address the challenges of autonomous decision-making 
and robotic navigation. The rise of deep learning and 
reinforcement learning has paved the way for more advanced 
systems capable of operating in dynamic environments. 
However, many traditional models face limitations in 
adaptability and task generalization, which have motivated 
the exploration of meta-learning frameworks. This 
literature review explores key research efforts in 
reinforcement learning (RL), meta-learning, and sensor-
based navigation, particularly focusing on the use of 
LiDAR sensor data for autonomous navigation. 

2.1 Reinforcement Learning for Autonomous Navigation 

Reinforcement learning (RL) has long been a popular 
approach for robotic control and decision-making tasks. In 
RL, an agent learns to make decisions by interacting with the 
environment and receiving rewards based on the outcome of 
its actions. Classic RL models such as Q-learning and Deep 
Q-Networks (DQN) have been widely used for robotic 
navigation, but these models often struggle to generalize 
across tasks and require significant training time [1], [2]. 

Several advancements have been made to improve RL 
for robotic navigation. Soft Actor-Critic (SAC), introduced 
by Haarnoja et al. [3], proposed an off-policy maximum 
entropy deep RL algorithm, which improved sample 
efficiency and stability. Similarly, Proximal Policy 
Optimization (PPO), developed by Schulman et al. [4], 
demonstrated improved robustness in learning policies for 
continuous control tasks. However, both SAC and PPO 
require extensive retraining when exposed to new tasks, 
which limits their adaptability in dynamic environments [5]. 

Despite these advances, traditional RL methods are 
heavily reliant on large amounts of data and computational 
resources, making them less practical for real-time 
applications where environments and tasks frequently 
change [6], [7]. Furthermore, RL methods often struggle 
with task generalization, meaning that they must be retrained 
from scratch when encountering novel tasks [8]. 

2.2 Meta-Learning in Robotics 

Meta-learning, or "learning to learn," has emerged as a 
promising alternative to overcome the limitations of RL by 
allowing systems to generalize across tasks. The goal of 
meta-learning is to train models that can quickly adapt to 
new tasks with minimal retraining. One of the most 
influential meta-learning algorithms is the Model-Agnostic 
Meta-Learning (MAML) framework, introduced by Finn 
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et al. [9]. MAML enables a model to learn how to optimize 
itself for rapid adaptation to new tasks by using gradient-
based updates. 

Building upon MAML, several works have extended 
meta-learning to enable few-shot learning, where models 
can learn new tasks with very few examples. Vinyals et al. 
[10] introduced Matching Networks, which are capable of 
one-shot learning by leveraging an attention-based 
mechanism to compare tasks. Ravi and Larochelle [11] 
further advanced few-shot learning with Optimization as a 
Model for few-shot classification, where a learned optimizer 
adapts quickly to new tasks using a minimal amount of data. 

In the context of robotics, meta-learning has shown great 
potential in enabling robots to generalize across a wide 
variety of tasks. Gupta et al. [12] applied meta-learning to 
multi-task robotic manipulation, demonstrating that robots 
can learn multiple manipulation skills and adapt quickly to 
new ones. Similarly, Zhou et al. [13] showed that meta-
learning can be applied to enable fast adaptation in dynamic 
environments for legged robots. However, many meta-
learning models still face challenges when applied to 
complex, real-world environments that involve high-
dimensional sensory inputs such as LiDAR data [14]. 

2.3 LiDAR-Based Navigation in Robotics 

LiDAR (Light Detection and Ranging) is a critical 
sensor modality used in autonomous robots for mapping, 
localization, and navigation. LiDAR sensors provide 
accurate 3D representations of the environment by emitting 
laser pulses and measuring the time it takes for the pulses to 
return after hitting objects [15]. This data is used to build 
detailed maps of the environment and to detect obstacles, 
making it a key component in robot navigation systems [16], 
[17]. 

In early research, Biber and Strasser [18] introduced the 
Normal Distributions Transform (NDT) approach for 
LiDAR scan matching, which enabled more efficient and 
accurate matching of point clouds in real-time applications. 
Similarly, Cadena et al. [19] reviewed the advancements in 
Simultaneous Localization and Mapping (SLAM), where 
LiDAR data plays a significant role in enabling robots to 
localize themselves while constructing a map of the 
environment. 

However, despite its accuracy, LiDAR-based navigation 
systems have limitations. They often rely on static models 
that are tailored to specific environments, which limits their 
adaptability in dynamic environments where the layout 
frequently changes [20]. Additionally, traditional SLAM and 
LiDAR-based navigation systems lack the ability to 
generalize across tasks, requiring manual intervention or 
retraining when exposed to new environments [21]. 

To address these limitations, Kendall et al. [22] explored 
combining LiDAR data with deep learning models for end-
to-end autonomous navigation. While this approach 
improved adaptability, it still required large datasets and 
significant computational resources for training. The 
integration of meta-learning with LiDAR sensor data offers 
a potential solution to these challenges by allowing robots to 
generalize across environments and adapt quickly to new 
tasks with minimal data [23]. 

 

Table 1. Summary Table of Key Literature 

Paper Key 
Contributions 

Limitations 

Sutton and 
Barto [1] 

Introduced the 
foundational 
framework for RL, 
including Q-learning 
and policy-based 
methods. 

Requires large 
amounts of task-
specific data; lacks 
generalization 
across tasks. 

Haarnoja 
et al. [3] 

Developed Soft 
Actor-Critic (SAC), 
improving sample 
efficiency and 
stability in deep RL 
for continuous 
control. 

Still requires 
extensive retraining 
for new tasks; slow 
adaptation to new 
environments. 

Finn et al. 
[9] 

Proposed Model-
Agnostic Meta-
Learning (MAML) 
for fast adaptation to 
new tasks using 
gradient-based 
updates. 

Struggles with high-
dimensional 
sensory inputs such 
as LiDAR data in 
complex 
environments. 

Vinyals et 
al. [10] 

Introduced 
Matching Networks, 
enabling one-shot 
learning for 
classification tasks 
using attention 
mechanisms. 

Primarily focused 
on classification 
tasks, with limited 
applicability to 
navigation and 
control. 

Gupta et 
al. [12] 

Applied meta-
learning to multi-
task robotic 
manipulation, 
allowing robots to 
learn multiple skills 
and adapt to new 
tasks quickly. 

Primarily tested on 
robotic arms with 
limited 
generalization to 
mobile navigation. 

Biber and 
Strasser 
[18] 

Proposed Normal 
Distributions 
Transform (NDT) 
for efficient LiDAR 
scan matching in 
robotic navigation. 

Effective for static 
environments but 
lacks adaptability in 
dynamic 
environments. 

Kendall et 
al. [22] 

Combined LiDAR 
data with deep 
learning for end-to-
end autonomous 
navigation, 
improving 
adaptability. 

Requires large 
amounts of training 
data; lacks task 
generalization and 
fast adaptation 
capabilities. 

 

2.4 Research Gaps 

From the review of existing literature, several research 
gaps have been identified: 

1. Adaptability of Reinforcement Learning: 
Traditional RL models, while effective for specific 
tasks, struggle to generalize across multiple tasks 
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and dynamic environments. They require extensive 
retraining, which makes them impractical for real-
time applications where environments frequently 
change [1], [3], [6]. 

2. Meta-Learning with High-Dimensional Sensory 
Inputs: While meta-learning frameworks like 
MAML have shown promising results in rapid task 
adaptation, their application in robotics is limited, 
particularly in handling high-dimensional sensory 
inputs like LiDAR data [9], [12], [13]. More 
research is needed to integrate meta-learning with 
sensor data for autonomous navigation. 

3. Task Generalization in LiDAR-Based 
Navigation: LiDAR-based navigation systems are 
highly accurate for mapping and obstacle detection, 
but most approaches rely on static task-specific 
models that do not generalize well to new 
environments [18], [19], [21]. Integrating meta-
learning with LiDAR could enable robots to adapt 
more effectively to changing environments. 

4. Few-Shot Learning in Robotic Navigation: 
While few-shot learning has been applied to tasks 
such as image classification, its application in 
robotic navigation, especially in dynamic 
environments, remains underexplored [10], [11]. 
Further work is needed to demonstrate how few-
shot learning can be used in navigation to allow 
robots to adapt with minimal data. 

The literature review highlights the significant progress 

made in the areas of reinforcement learning (RL), meta-

learning, and LiDAR-based navigation for autonomous 

robotic systems. While RL models such as Q-learning, Soft 

Actor-Critic (SAC), and Proximal Policy Optimization 

(PPO) have made strides in learning complex tasks, they 

continue to face challenges in task generalization and 

adaptation speed. These limitations hinder their applicability 

in dynamic environments, where frequent retraining is 

impractical. On the other hand, meta-learning has 

demonstrated great potential for overcoming these 

challenges, particularly through methods like Model-

Agnostic Meta-Learning (MAML) and few-shot learning, 

which enable faster adaptation with limited data. However, 

the integration of meta-learning with high-dimensional 

sensory inputs, such as LiDAR data, remains underexplored, 

presenting a crucial research gap. 

Moreover, while LiDAR-based navigation systems offer 

precise mapping and obstacle detection capabilities, they 

typically rely on static, task-specific models that do not 

generalize well to changing environments. The combination 

of meta-learning with LiDAR sensor data could address 

these limitations by enabling robots to adapt quickly and 

generalize across various tasks, making it a promising 

direction for future research. In conclusion, the integration 

of meta-learning with LiDAR-based navigation presents an 

exciting opportunity to bridge the gaps in adaptability and 

task generalization in autonomous robotics, setting the stage 

for the development of more robust and flexible systems. 

3  Methodology 
The central research problem is to optimize autonomous 

decision-making in robots through a meta-learning approach 

that allows the robot to adapt quickly to new tasks in 
dynamic, unpredictable environments. Traditional learning 
methods, such as reinforcement learning (RL), require 
extensive retraining when exposed to new tasks, which limits 
their generalization and adaptability. The key objective is to 
design a meta-learning-based framework that enables 
efficient decision-making, fast adaptation, and task 
generalization in robots, addressing the following research 
question: 

How can we design a meta-learning-based model that 
enables robots to generalize across tasks and adapt quickly 
to new environments with minimal retraining and 
computational cost? 

To address the research problem, the following specific 

methodology is proposed. Each step in the methodology is 

mathematically modeled and provides precise solutions 

tailored to the problem of autonomous robotic decision-

making. 

The diagram presents an architecture for autonomous 

navigation using LiDAR sensor data, structured into three 

major subsystems: Perception, Navigation Model, and 

Decision-Making. Each subsystem plays a specific role in 

processing sensor data, learning from the environment, and 

making optimal decisions for navigation. 

3.1 Task Embedding 

The first step is encoding tasks into a shared task 

embedding space, which allows the model to generalize 

across tasks by embedding task-specific information into a 

unified vector space. 

Define the task embedding function as:  𝑓emb: 𝒯 → ℝ𝑑 

where 𝑇𝑖 ∈ 𝒯  represents a task, and 𝑓emb (𝑇𝑖)  is the 

corresponding 𝑑-dimensional embedding for task 𝑇𝑖 . This 

embedding captures essential characteristics of tasks such as 

goals, state spaces, and constraints. 

The shared task embedding space allows the robot to 

recognize relationships between tasks, facilitating transfer 

learning and generalization. For instance, tasks that require 

navigation in different environments are embedded into a 

similar region in the vector space, enabling the robot to reuse 

learned strategies across these tasks. 

The task embedding serves as a foundational element, 

enabling the robot to effectively transfer knowledge between 

tasks. By embedding tasks into a common space, the model 

can leverage similarities between tasks, improving its al ↓ / 

to generalize. 

 

3.2 Meta-Learner Model: Using LSTM (Long Short-Term 
Memory) 

The meta-learner uses a Long Short-Term Memory 

(LSTM) network to model the sequential nature of decision-

making in dynamic environments. LSTM is chosen for its 

ability to handle long-term dependencies in time series data, 

making it highly suitable for robotic decision-making tasks 

that involve sequences of actions. LSTM is specifically 

selected because it can retain long-term dependencies in the 

state-action space. In robotic decision-making, the ability to 

remember previous states and actions over long sequences is 
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crucial, particularly for tasks involving navigation, 

manipulation, or multi-step actions. LSTM avoids the 

vanishing gradient problem, which can be encountered by 

simpler recurrent networks. 

The LSTM-based meta-learner is defined as: 

𝑓meta : (𝑆𝑡 , 𝐴𝑡) → 𝜋𝜃(𝐴𝑡 ∣ 𝑆𝑡)                (1) 

where 𝑆𝑡  is the state at time 𝑡, 𝐴𝑡  is the action, and 

𝜋𝜃(𝐴𝑡 ∣ 𝑆𝑡) is the policy parameterized by 𝜃, which outputs 

the probability distribution of actions given the state. 

The LSTM maintains a hidden state ℎ𝑡  that carries 

information over time:  

ℎ𝑡 = LSTM⁡(𝑆𝑡 , ℎ𝑡−1)                           (2) 

where ℎ𝑡−1  is the hidden state from the previous time 

step. This hidden state enables the metalearner to retain and 

use past information when making decisions. 

• Objective Function: 

The LSTM-based meta-learner is optimized to maximize 

the cumulative reward across tasks: 

min
𝜃
 𝔼𝑇𝑖∼𝒯

[∑  𝑇
𝑡=1   𝛾

𝑡𝑅(𝑠𝑡 , 𝑎𝑡)]                (3) 

where 𝛾  is the discount factor, and 𝑅(𝑠𝑡 , 𝑎𝑡)  is the 

reward at time 𝑡. 

The LSTM structure enables the robot to make decisions 
based on its current state and the history of previous actions 
and states, which is essential for tasks that involve sequential 
decision-making. The model captures long-term 
dependencies, ensuring that the robot can efficiently 
complete tasks that involve multiple steps or stages. 
 

3.3  Fast Adaptation Mechanism: Few-Shot Learning 

To ensure that the robot can quickly adapt to new tasks 

with minimal retraining, we employ a few shots learning 

mechanism. This allows the model to update its parameters 

using only a few examples from new tasks. 

For a new task 𝑇new , the model parameters 𝜃 are updated 

using the gradient of the task-specific loss: 

𝜃′ = 𝜃 − 𝛼∇𝜃ℒmeta (𝑇new , 𝜃)                  (4) 

where 𝛼  is the learning rate, and ℒmeta  is the meta-

objective loss for the new task. 

• Few-Shot Learning Process: 

• Step 1: The robot is provided with a few 

examples from the new task 𝑇new . 

• Step 2: The model updates its policy 

parameters using the task-specific data through 

gradient descent. 

• Step 3: The updated model is evaluated on the 

new task to ensure fast adaptation. 

• Mathematical Objective: 

The loss function for fast adaptation is: 

ℒmeta (𝑇new , 𝜃) = 𝔼(𝑠,𝑎)∼𝐷new 
[log⁡ 𝜋𝜃(𝑎 ∣ 𝑠)]          (5) 

The few-shot learning mechanism ensures that the model 

minimizes this loss after a small number of gradient updates, 

allowing for rapid task adaptation. 

Few-shot learning reduces the need for extensive 

retraining when the robot encounters new tasks. This is 

critical for real-world applications where robots must 

quickly adapt to new environments or tasks with limited 

data. 

3.4 Reward-Based Reinforcement Learning 

The robot's decision-making is driven by a reward-based 

reinforcement learning mechanism, which balances task-

specific performance and generalization across tasks. 

The reward function is defined as: 

𝑅(𝑠, 𝑎) = 𝑟task (𝑠, 𝑎) + 𝜆𝑟generalization (𝑠, 𝑎)           (6) 

where 𝑟task  is the immediate reward for completing the 

current task, and 𝑟generalization  rewards actions that improve 

generalization across tasks. The parameter 𝜆  controls the 

balance between task-specific and generalization rewards. 

The reward function encourages the robot to not only 

complete the current task but also to learn strategies that are 

useful for future tasks. For example, if the robot is navigating 

in a new environment, it is rewarded for both reaching the 

destination and learning generalizable navigation strategies. 

The meta-learner maximizes the cumulative reward: 

max
𝜃

 𝔼(𝑠,𝑎)∼𝐷 [∑  𝑇
𝑡=1   𝛾

𝑡 (𝑟task (𝑠𝑡 , 𝑎𝑡) +

𝜆𝑟generalization (𝑠𝑡 , 𝑎𝑡))]                                      (7) 

This objective ensures that the robot is motivated to 

balance immediate task success with long-term 

generalization capabilities. 

3.5 Training and Optimization: Meta-Gradient Descent 

The model is trained using meta-gradient descent, which 

optimizes the model parameters 𝜃  by considering 

performance across multiple tasks. This allows the meta-

learner to generalize well to unseen tasks. 

The meta-objective function is: 

min
𝜃
 𝔼𝑇𝑖∼𝒯

[ℒmeta (𝑇𝑖 , 𝜃)]                            (8) 

where 𝑇𝑖  is sampled from the task distribution 𝒯 , and 

ℒmeta (𝑇𝑖 , 𝜃) is the loss for task 𝑇𝑖 . 

Meta-gradient descent allows the model to optimize its 

performance across a distribution of tasks, ensuring that it 

can generalize to new, unseen tasks with minimal adaptation. 

This training strategy ensures that the robot's policy is robust 

and adaptable across a wide range of environments. 

 

3.6 Simulation and Evaluation 

To validate the proposed methodology, we simulate a 

variety of robotic tasks, such as navigation, manipulation, 

and obstacle avoidance, across different environments. 

Algorithm for Meta-Learning-Based Autonomous 

Navigation Using LiDAR Sensor Data 
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This step-by-step algorithm is designed to guide a robot 

through efficient decision-making, fast adaptation, and task 

generalization. It leverages meta-learning techniques, 

specifically a Long Short-Term Memory (LSTM) meta-

learner, combined with LiDAR sensor data to allow the 

robot to autonomously navigate unknown environments. 

Step 1: Model Initialization 

Initialize the LSTM meta-learner parameters: 

𝜃0 =  random initialization  

Step 2: Task and LiDAR Data Input 

For each task 𝑇𝑖 , collect LiDAR data 𝐿𝑖 : 

𝐿𝑖 = LiDAR⁡  sensor data for task 𝑇𝑖 

Step 3: Data Preprocessing and Task Embedding 

Preprocess LiDAR data 𝐿𝑖, then compute task embedding 𝐞𝑖 
:𝐞𝑖 = 𝑓emb(𝐿𝑖)⁡ where ⁡𝐞𝑖 ∈ ℝ𝑑                      (9) 

Step 4: LSTM Meta-Learner for Sequential Decision-

Making 

Feed embedding 𝐞𝑖 and past states 𝑆𝑡 into LSTM: 

ℎ𝑡 = LSTM⁡(𝑆𝑡 , ℎ𝑡−1, 𝜃)                          (10) 

Step 5: Generate Action Probabilities 

Compute action probability distribution: 

𝜋𝜃(𝐴𝑡 ∣ 𝑆𝑡) = softmax⁡(𝑊ℎℎ𝑡 + 𝑏)       (11) 

Step 6: Few-Shot Learning for Fast Adaptation 

For new task 𝑇new,  update 𝜃 using few-shot learning: 

𝜃′ = 𝜃 − 𝛼∇𝜃ℒmeta (𝑇new , 𝜃)                   (12) 

Step 7: Reward Function Calculation 

For each action 𝐴𝑡, compute combined reward: 

𝑅(𝑠𝑡 , 𝑎𝑡) = 𝑟task (𝑠𝑡 , 𝑎𝑡) + 𝜆𝑟gen (𝑠𝑡 , 𝑎𝑡)     (13) 

Step 8: Update Model Parameters 

Update parameters using gradient descent: 

𝜃 = 𝜃 − 𝛼∇𝜃(∑  𝑇
𝑡=1   𝛾

𝑡𝑅(𝑠𝑡 , 𝑎𝑡))             (14) 

Step 9: Select Optimal Action 

Choose action 𝐴𝑡
∗ based on action probabilities: 

𝐴𝑡
∗ = arg⁡max

𝐴
 𝜋𝜃(𝐴 ∣ 𝑆𝑡)                     (15) 

Step 10: Loop for New Tasks 

Repeat for each task 𝑇𝑖  :  

for each task 𝑇𝑖 , repeat steps 2-9 

The flowchart below visually represents the algorithm’s 

steps, showing how data flows through the system and how 

decisions are made. 

 

Figure 1: Flow model of the proposed work 

Evaluation Metrics: 

1. Generalization Performance: Measures the robot's 

ability to perform well on unseen tasks. 

2. 𝒫gen =
 Success on unseen tasks 

 Total number of unseen tasks 
 

3. Adaptation Time: Assesses how quickly the model 

adapts to new tasks using few-shot learning. 

4. Success Rate: Percentage of successfully 

completed tasks in various environments. 

5. Computational Efficiency: Measures the 

computational resources required for task 

execution and adaptation. 

The research proposes a precise methodology to 

optimize robotic decision-making using LSTM-based 

meta-learning and few-shot learning. This approach 

ensures fast adaptation to new tasks, generalization across 

tasks, and computational efficiency. By using LSTM for 

capturing sequential dependencies, few-shot learning for 

rapid adaptation, and a dual-objective reward mechanism, 

the robot is able to efficiently make decisions in dynamic, 

real-world environments. The model will be evaluated 

through simulations, focusing on generalization, success 

rate, adaptation time, and computational efficiency, with the 

expectation that it will outperform traditional approaches in 

terms of both adaptation and generalization. 

4 Result  
 In this section, we present the performance outcomes of 

the meta-learning-based autonomous navigation system 

using LiDAR sensor data. The system's ability to generalize 

across tasks, adapt quickly to new environments, and 

optimize decision-making was evaluated through a series of 

tasks. The metrics considered include task success rate, 

path efficiency, adaptation time, reward comparison, and 

model parameter updates. These results are provided in 
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both tabular form and graphical representations to 

highlight the key aspects of the robot’s performance across 

different tasks. 

4.1 Task Success Rate and Path Efficiency 

The task success rate represents the percentage of 
successful navigations (tasks completed without collisions), 
while the path efficiency measures the ratio of the robot's 
actual path length to the optimal path length. A higher path 
efficiency indicates more direct navigation to the goal. 

Table 1: Task Success Rate and Path Efficiency 

Task 
ID 

Task Success Rate 
(%) 

Average Path 
Efficiency (%) 

Task 1 95 85 

Task 2 90 82 

Task 3 93 87 

Task 4 92 84 

Task 5 96 88 

 

The above table summarizes the robot's performance in 
terms of task success and path efficiency. As seen, the robot 
performs consistently well, with success rates ranging from 
90% to 96%. The path efficiency also shows high values, 
indicating that the robot follows near-optimal paths in most 
tasks. 

 

Figure 2: Task Success Rate and Path Efficiency 

This graph compares task success rates and path 
efficiency across different tasks, providing a clear visual of 
the robot’s performance consistency. 

4.2 Adaptation Time Per Task 

The adaptation time reflects how quickly the robot adapts 
to new environments using few-shot learning. Lower 
adaptation times suggest that the system can quickly adjust 
its decision-making process with minimal data. 

Table 2: Adaptation Time Per Task 

Task ID Adaptation Time (Seconds) 

Task 1 10 

Task 2 9 

Task 3 12 

Task 4 11 

Task 5 8 

 

The adaptation times indicate that the robot adapts to new 
tasks in under 12 seconds for all cases, demonstrating its 
ability to quickly adjust its navigation strategy using limited 
new information. 

 

Figure 3: Adaptation Time Per Task 

This bar chart highlights how efficiently the model 
adapts to new tasks. Task 5 shows the quickest adaptation at 
8 seconds, while Task 3 takes the longest at 12 seconds. 

 

4.3 Reward Comparison: Task-Specific vs Generalization 

The task-specific reward evaluates the robot’s 
immediate performance in a specific task, while the 
generalization reward encourages learning behaviors that 
benefit future tasks. A balance between the two rewards 
indicates that the robot is optimizing both short-term task 
success and long-term generalization. 

Table 3: Reward Comparison (Task-Specific vs. 

Generalization) 

Task 
ID 

Task-Specific 
Reward 

Generalization 
Reward 

Task 1 85 75 

Task 2 80 77 

Task 3 83 80 

Task 4 81 76 

Task 5 87 82 

 

In this table 3, Task 5 shows the highest task-specific 
reward of 87 and generalization reward of 82, indicating a 
good balance of immediate performance and long-term 
learning. 
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Figure 4: Reward Comparison 

This plot compares the task-specific and generalization 
rewards for each task, showing how well the robot balances 
immediate task success with generalization across tasks. 

4.4 Model Parameter Updates 

The model parameter updates track changes in the 
model parameters θ\thetaθ after completing each task. 
Larger updates indicate significant learning and adaptation 
by the model during the task. 

Table 4: Model Parameter Updates (After Task 

Completion) 

Task ID Model Parameter Updates (Change in θ) 

Task 1 0.015 

Task 2 0.010 

Task 3 0.017 

Task 4 0.013 

Task 5 0.009 

 

Task 4 shows the largest parameter update, reflecting that 
the model had to adapt significantly during this task, while 
Task 5 shows the smallest update, indicating that minimal 
learning adjustments were required. 

 

Figure 5: Model Parameter Updates 

This plot illustrates the magnitude of the parameter 
updates θ after each task, showing how much the model 
learns and adapts over time. 

4.5 Performance Evolution  

The results presented in the table clearly demonstrate the 
superior performance of the meta-learning-based 
navigation system compared to traditional reinforcement 
learning (RL) and static task-specific models. The meta-
learning approach excels across all key metrics, highlighting 
its effectiveness in dynamic, real-world environments: 

Task Success Rate: The meta-learning model achieves the 
highest task success rate (93.2%), surpassing traditional RL 
(85.7%) and static task-specific models (78.4%). This 
demonstrates its ability to generalize across various tasks and 
successfully navigate diverse environments, avoiding 
collisions and reaching goals efficiently. 

Path Efficiency: The meta-learning system has a path 
efficiency of 85.2%, meaning it navigates closer to the 
optimal path than the other approaches. The LSTM’s 
capability to retain memory and adapt its decision-making 
process based on past states contributes to better navigation 
efficiency. 

Adaptation Time: One of the most significant advantages 
of the meta-learning approach is its rapid adaptation to new 
environments. With an average adaptation time of just 9.5 
seconds, the system adjusts quickly using few-shot learning, 
far outperforming traditional RL (23.7 seconds), which 
requires more extensive retraining. Static models are not 
designed for adaptation, so adaptation time is not applicable 
to them. 

Reward Optimization: The meta-learning system 
optimizes rewards more effectively, balancing task-specific 
rewards (short-term success) with generalization rewards 
(long-term learning) to achieve an overall reward 
optimization of 82.3%. This demonstrates the model's ability 
to learn behaviours that not only perform well in the current 
task but are also reusable for future tasks. Traditional RL lags 
behind at 76.2%, while static models show the lowest 
optimization at 69.5%. 

Model Parameter Updates: The meta-learning model 
requires smaller parameter updates (Δ𝜃 = 0.012)  than 
traditional RL ( Δ𝜃 = 0.021  ), indicating more efficient 
learning. This efficiency in updating the model parameters 
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reduces computational costs and leads to faster model 
convergence. 

Table 5: Performance Evaluation 

Metric Meta-
Learning 

Traditional 
RL 

Static 
Task-
Specific 
Models 

Task Success 
Rate 

93.2% 85.7% 78.4% 

Path 
Efficiency 

85.2% 78.9% 70.3% 

Adaptation 
Time 

9.5 
seconds 

23.7 
seconds 

N/A 

Reward 
Optimization 

82.3% 76.2% 69.5% 

Model 
Parameter 
Update (Δθ) 

0.012 0.021 N/A 

 

The meta-learning-based approach consistently 
outperforms traditional RL and static task-specific models 
across all evaluated metrics. Its ability to generalize across 
tasks, adapt quickly with minimal retraining, and maintain 
high performance in both short-term task success and long-
term learning makes it the most suitable approach for real-
world autonomous navigation. These results confirm that 
meta-learning is an effective solution for dynamic and 
unpredictable environments where flexibility and efficiency 
are crucial. 

5 Discussion  
The results of this study provide compelling evidence 

that the proposed meta-learning-based navigation system 
significantly improves the robot’s performance across a 
variety of dynamic tasks. The high task success rate 
(93.2%) and path efficiency (85.2%) confirm that the 
system can effectively generalize across different navigation 
tasks, minimizing the need for task-specific tuning. 
Furthermore, the adaptation time of 9.5 seconds highlights 
the effectiveness of the few-shot learning mechanism, 
which allows the system to quickly adapt to new 
environments with minimal retraining. 

Compared to traditional reinforcement learning (RL) 
models, the meta-learning system exhibits superior 
performance, particularly in terms of reward optimization 
and parameter update efficiency. Traditional RL models 
often struggle to adapt to new environments due to their 
reliance on large amounts of task-specific data and 
computational resources for retraining. By contrast, the 
meta-learning model achieves faster adaptation and better 
generalization, thanks to its LSTM-based memory 
retention and gradient-based updates. 

One of the key advantages of the proposed system is its 
ability to balance task-specific performance and long-term 
generalization through its dual reward function. This 
balance allows the robot to not only excel in its current task 
but also develop strategies that are transferable to future 
tasks. The smaller model parameter updates in the meta-
learning system also suggest that it can learn efficiently with 

fewer computational resources, making it more practical for 
real-time applications. 

6 Limitation Study 
Despite the promising results, the system does have 

limitations. The primary limitation is the reliance on LiDAR 
sensor data for navigation. While LiDAR provides highly 
accurate point cloud data, it may be affected by 
environmental factors such as light conditions or reflective 
surfaces, which could lead to sensor noise or incomplete 
data. This could affect the task success rate in environments 
with poor sensor feedback. 

Another limitation is the computational complexity of 
the LSTM-based model. Although the meta-learning 
framework reduces the need for retraining, the LSTM 
architecture requires significant computational resources to 
maintain long-term memory, particularly for tasks with 
extended sequences of actions. This could limit the 
scalability of the model in larger, more complex 
environments. 

Additionally, the few-shot learning mechanism may 
not perform as well in completely novel tasks that are vastly 
different from those seen during training. While the model 
adapts well within similar task distributions, extreme 
variations in task characteristics could still necessitate more 
extensive retraining. 

7 Conclusion 
This paper presents a novel meta-learning-based 

framework for improving autonomous decision-making in 

robots through the use of LiDAR sensor data and LSTM-

based sequential learning. The proposed system addresses 

key challenges faced by traditional learning models, 

including the need for extensive retraining and limited task 

generalization. By integrating few-shot learning and a dual 

reward function, the system balances short-term task 

performance with long-term generalization, enabling robots 

to adapt quickly to new environments. Performance 

evaluations show that the meta-learning model consistently 

outperforms traditional reinforcement learning approaches 

in terms of task success rate, path efficiency, adaptation 

time, and reward optimization. The results of this study 

suggest that meta-learning is a viable and effective approach 

for autonomous navigation in dynamic, unpredictable 

environments. Future research could focus on improving the 

scalability of the system to handle larger, more complex 

environments and exploring alternative sensor inputs to 

enhance robustness in different conditions. 
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