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Abstract: Cardiac arrhythmias, including atrial fibrillation (AF) and ventricular tachycardia (VT), are major causes of 
mortality worldwide, requiring timely detection for effective treatment. Electrocardiogram (ECG) signals are the primary 
diagnostic tool for arrhythmias, but existing static models often fail to adapt in real-time to patient-specific data, leading to 
reduced diagnostic accuracy. This paper proposes an adaptive neural network system integrated with reinforcement learning 
(RL) for real-time ECG diagnosis. The system continuously updates its model weights in response to new ECG data, allowing 
it to maintain high diagnostic accuracy even in dynamic clinical environments. By leveraging RL, the model improves both 
its accuracy and adaptability, addressing limitations of traditional machine learning and deep learning methods. Extensive 
experimental results show significant improvements in accuracy (up to 94%), precision (91%), recall (90%), and adaptation 
speed over static models. The proposed adaptive system is highly suitable for continuous patient monitoring, offering real-
time performance and potential applications in clinical settings. Limitations regarding data dependency and computational 
costs are discussed, with recommendations for future research to enhance scalability and efficiency. 

Keywords: Real-time ECG diagnosis, cardiac arrhythmias, real-time ECG diagnosis, adaptive neural networks, 
reinforcement learning, atrial fibrillation (AF), and ventricular tachycardia (VT). 
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1.Introduction 

Cardiac arrhythmias, irregular heartbeats that may lead 

to severe health issues such as heart failure, stroke, and 

sudden cardiac arrest, remain one of the leading causes of 

mortality worldwide. Atrial fibrillation (AF) and ventricular 

tachycardia (VT) are two prevalent types of arrhythmias 

that require timely detection for effective treatment and 

prevention of life-threatening events [1],[2]. 

Electrocardiogram (ECG) signals are the most widely used 

tool for diagnosing arrhythmias. However, interpreting 

ECG signals is a complex task, particularly in real-time, 

where the variability in patient data, noise, and evolving 

patterns of the heart rhythm pose significant challenges [3], 

[4]. 

Traditional ECG-based arrhythmia detection systems 

rely on static machine learning or rule-based models, which 

are often trained once on historical data and deployed 

without any real-time adaptability [5], [6]. While these 

models can achieve satisfactory performance in controlled 

environments, they tend to struggle in real-time clinical 

settings where patient conditions can change rapidly [7]. 

The primary limitation of these static models lies in their 

inability to learn and adjust dynamically as new data is 

presented, leading to reduced accuracy and higher rates of 

false positives and negatives [8], [9]. 

Recent advances in deep learning, particularly neural 

networks, have improved the accuracy of ECG-based 

arrhythmia detection [10], [11]. Deep learning models can 

automatically extract relevant features from raw ECG 

signals, eliminating the need for handcrafted feature 
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extraction [12]. However, even these models, while 

powerful, are limited by their static nature and inability to 

adapt once deployed. The need for a system that can adjust 

its parameters and performance in real-time is becoming 

increasingly critical in clinical practice [13], [14]. 

To address these challenges, this paper proposes an 

adaptive neural network system for real-time ECG 

diagnosis, incorporating reinforcement learning to enable 

continuous learning and adaptation. Reinforcement learning 

(RL) has been successfully applied in various domains, 

from robotics to game-playing AI [15], [16], and has shown 

potential for enhancing real-time performance in medical 

applications [17], [18]. In the context of real-time medical 

diagnosis, RL allows the model to improve its accuracy and 

adaptability by adjusting its internal parameters based on 

feedback received from the environment (in this case, new 

patient data) [19]. 

Several studies have explored the use of reinforcement 

learning in healthcare, focusing on areas such as dynamic 

treatment policies and personalized medicine [20], [21]. For 

instance, RL has been applied to optimize treatment 

strategies for chronic diseases like diabetes [22] and to 

personalize cancer treatment plans [23]. While there has 

been limited exploration of RL in the context of real-time 

ECG monitoring, its potential to enhance diagnostic 

performance by dynamically adjusting the model is highly 

promising. 

This research builds upon prior work by combining deep 

learning with reinforcement learning to create a system that 

is both accurate and adaptive. The proposed system 

continuously updates its model weights in response to new 

ECG patterns, allowing it to maintain high diagnostic 

performance even in the presence of noisy or previously 

unseen data. By leveraging RL, the system can also 

optimize itself in real-time, reducing the need for manual 

retraining and improving clinical decision-making [24], 

[25]. 

The key contributions of this work include: 

• The design and implementation of an adaptive 

neural network that integrates reinforcement 

learning for real-time arrhythmia detection. 

• An extensive evaluation of the model’s 

performance, demonstrating significant 

improvements in accuracy, adaptability, and real-

time diagnostic capability compared to traditional 

static models. 

• A discussion of the practical implications of using 

RL in real-time ECG diagnosis and the potential 

for future research to expand this adaptive 

framework into other areas of medical diagnostics. 

The remainder of this paper is organized as follows. 

Section 1 reviews related work on ECG-based arrhythmia 

detection using machine learning, neural networks, and 

reinforcement learning. Section 2 details the proposed 

adaptive neural network architecture and the integration of 

reinforcement learning for continuous model updates. 

Section 3 presents the experimental setup, including the 

dataset, model parameters, and evaluation metrics. Section 

4 discusses the results of the experiments and provides a 

comparative analysis with existing models. Section 5 

addresses the limitations of the current approach and 

suggests future research directions. Finally, Section 6 

concludes the paper, summarizing the key findings and 

contributions of this work. 

2. Literature Review 

The detection and diagnosis of cardiac arrhythmias using 
electrocardiogram (ECG) signals have been extensively 
studied, with research spanning traditional machine learning 
approaches, deep learning techniques, and more recently, 
adaptive models incorporating reinforcement learning. This 
section reviews key works in each of these areas, 
highlighting their contributions, limitations, and potential 
gaps in the literature. 

2.1 Traditional Machine Learning Approaches 

Traditional machine learning algorithms have been 
widely used for arrhythmia detection in ECG signals. 
Methods such as decision trees, support vector machines 
(SVMs), k-nearest neighbors (k-NN), and random forests 
have been employed to classify arrhythmias based on 
handcrafted features extracted from ECG data. 

Feature Engineering: A common approach in 
traditional models is to manually extract features such as 
heart rate variability, QRS complex morphology, RR 
intervals, and signal frequency characteristics [1], [2]. These 
features are then fed into classifiers such as SVMs or 
decision trees. For example, de Chazal et al. [3] used a 
combination of time and frequency domain features to detect 
sleep apnea from ECG signals. Similarly, Osowski et al. [4] 
employed a combination of wavelet transforms and SVM for 
arrhythmia classification, achieving reasonable accuracy but 
requiring expert knowledge for feature extraction. 

Limitations: While these models perform well in 
structured environments, they struggle in real-time 
applications due to their inability to generalize across 
different patient populations and their dependence on 
manually engineered features. Additionally, these methods 
do not inherently adapt once trained, limiting their 
usefulness in dynamic clinical environments [5]. Moreover, 
the reliance on handcrafted features means that the 
performance of the model is highly dependent on the quality 
of feature selection, which may not capture the full 
complexity of ECG signals. 

2.2 Deep Learning for ECG Classification 

The advent of deep learning has significantly advanced 
ECG classification tasks by eliminating the need for manual 
feature engineering. Deep learning models, particularly 
convolutional neural networks (CNNs) and recurrent neural 
networks (RNNs), have demonstrated strong performance in 
arrhythmia detection due to their ability to automatically 
learn complex features from raw data. 

Convolutional Neural Networks (CNNs): CNNs have 
been widely applied in ECG analysis due to their capacity to 
capture spatial hierarchies in data. Yao et al. [6] proposed a 
CNN-based model for detecting arrhythmias from 12-lead 
ECG signals, achieving state-of-the-art accuracy. Similarly, 
Rajpurkar et al. [7] developed a deep learning model capable 
of detecting 14 different heart rhythm disorders from a large 
dataset of ECG recordings, reporting performance 
comparable to that of expert cardiologists. CNNs have been 
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particularly effective in identifying patterns within the QRS 
complex and other key ECG features, making them well-
suited for arrhythmia detection. 

Recurrent Neural Networks (RNNs): RNNs and their 
variants, such as Long Short-Term Memory (LSTM) 
networks, have been applied to ECG classification tasks to 
model the temporal dependencies in the signals. Hannun et 
al. [8] used LSTMs to detect arrhythmias from single-lead 
ECGs, demonstrating that the model could capture long-term 
dependencies within the signal. Similarly, Zihlmann et al. [9] 
combined CNNs and LSTMs to exploit both spatial and 
temporal information in ECG data, significantly improving 
the classification accuracy for multiple arrhythmia types. 

Limitations: Despite their impressive performance, deep 
learning models are typically static and do not adapt to new 
data once they are deployed. This limitation is critical in real-
time monitoring environments, where patient conditions can 
change over time. Additionally, while CNNs and RNNs can 
extract complex features, they often require large labeled 
datasets for training and are computationally intensive, 
which can limit their applicability in resource-constrained 
environments such as wearable devices [10], [11]. 

2.3  Adaptive Models and Reinforcement Learning 

While traditional and deep learning methods have 
significantly advanced ECG classification, they remain static 
once trained, limiting their real-time applicability. To 
address this issue, recent research has explored the 
integration of reinforcement learning (RL) into neural 
networks to create adaptive models that can adjust in real-
time based on feedback from the environment. 

Reinforcement Learning in Healthcare: RL has shown 
promise in dynamic healthcare applications where models 
must adapt to changing conditions. For example, 
Komorowski et al. [12] applied RL to optimize treatment 
strategies for sepsis, where the model dynamically adjusted 
treatment based on the patient’s evolving condition. RL has 
also been applied in personalized treatment planning for 
chronic diseases such as diabetes, where treatment actions 
are optimized based on the patient's current state and 
historical data [13], [14]. These studies demonstrated the 
feasibility of using RL in medical decision-making, 
highlighting its potential to enhance real-time adaptability in 
clinical settings. 

Reinforcement Learning for ECG Classification: RL 
has only recently been applied to ECG analysis, but early 
studies show promising results. Lee et al. [15] proposed an 
RL-based framework to classify ECG signals and detect 
arrhythmias, demonstrating that the RL agent could improve 
classification accuracy by learning from diagnostic 
feedback. Similarly, Chen et al. [16] explored the use of RL 
in dynamically adjusting the decision threshold of an ECG 
classifier based on the current performance of the model, 
showing that RL could enhance adaptability in real-time 
applications. 

Adaptive Neural Networks: The combination of neural 
networks and RL has been used to create adaptive models for 
ECG classification. In these models, the neural network is 
trained initially on a large ECG dataset, and the RL agent 
continuously updates the network’s weights based on new 
data and feedback from the environment. This approach 
enables the model to adapt to patient-specific data and 

evolving patterns in real-time, addressing one of the primary 
limitations of static models [17], [18]. 

Limitations and Challenges: While RL offers 
significant advantages in adaptability, it also introduces 
challenges. One major issue is the computational cost of 
continuous learning and adaptation, especially in resource-
constrained environments such as wearable health monitors 
[19]. Additionally, RL-based models often require extensive 
exploration of the action space to optimize performance, 
which can lead to longer training times and potential 
instability if not carefully managed [20]. Furthermore, most 
RL-based systems are black boxes, which may reduce their 
interpretability in clinical settings, where explainability is 
crucial for gaining trust from healthcare professionals [21]. 

2.4  Hybrid Approaches and Other Emerging Techniques 

Recent work has explored hybrid approaches that 
combine deep learning with other advanced techniques to 
enhance ECG classification. For instance, hybrid models that 
integrate CNNs with attention mechanisms have been 
proposed to allow the model to focus on the most relevant 
parts of the ECG signal [22]. Attention-based models have 
shown promise in tasks requiring temporal dependencies and 
have been particularly effective in tasks such as rhythm 
segmentation and arrhythmia classification. 

Other emerging techniques include transfer learning, 
where pre-trained models on large, general ECG datasets are 
fine-tuned for specific arrhythmia detection tasks. Transfer 
learning has been successfully used to improve the 
performance of models in cases where the labeled data is 
scarce or heterogeneous [23]. 

Limitations: Hybrid models and transfer learning, while 
powerful, still rely on static architectures that do not adapt 
once deployed in real-time environments. Moreover, the 
complexity of these models can lead to higher 
computational costs and increased training time, limiting 
their use in real-time monitoring applications [24]. 

 

Table 1: Summary of Key Works and Research Gaps 

Reference Method Strengths Limitations 

de Chazal 

et al. [3] 

SVM 

with 

handcrafte

d features 

Effecti

ve feature 

extraction, 

good 

performanc

e 

Static model, 

no real-time 

adaptability 

Osowski 

et al. [4] 

Wavel

et + SVM 

Good 

classificati

on accuracy 

Feature 

engineering 

required, not 

adaptive 

Rajpurkar 

et al. [7] 

CNN 

for 

arrhythmia 

detection 

High 

accuracy, 

automatic 

feature 

extraction 

Large dataset 

needed, static 

once deployed 

Zihlmann 

et al. [9] 

CNN 

+ LSTM 

for ECG 

classificati

on 

Combi

nes spatial 

and 

temporal 

features 

Computation

ally intensive, 

lacks adaptability 

Komorow

ski et al. [12] 

RL for 

sepsis 

treatment 

Dynam

ic decision-

making, 

High 

computational 
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personalize

d treatment 

cost, limited 

interpretability 

Lee et al. 

[15] 

RL-

based 

ECG 

classificati

on 

Adapti

ve, real-

time 

feedback 

Computation

ally expensive, 

black-box nature 

of RL 

Chen et 

al. [16] 

RL for 

dynamic 

decision 

thresholds 

Enhanc

ed real-time 

adaptability 

Requires 

extensive 

training, stability 

concerns 

Yao et al. 

[6] 

CNN-

based 

ECG 

classifier 

State-

of-the-art 

accuracy 

Static model, 

limited by 

dataset size 

Hannun et 

al. [8] 

LSTM 

for 

arrhythmia 

detection 

Effecti

ve for long-

term 

dependenci

es in ECG 

signals 

Requires 

large datasets, 

not adaptable in 

real-time 

 

Research Gaps 

• Adaptability in Real-Time Monitoring: Most 
current models, particularly those using traditional 
machine learning and deep learning, are static once 
deployed. There is a clear need for models that can 
adapt dynamically in real-time based on patient-
specific data. 

• Computational Efficiency: Reinforcement 
learning-based models, while promising, are 
computationally expensive and may not be feasible 
for resource-constrained environments, such as 
wearable devices. Research is needed to explore 
lightweight adaptive models. 

• Explainability and Interpretability: The black-
box nature of deep learning and reinforcement 
learning models presents a challenge in clinical 
adoption. Future work should focus on improving 
model interpretability to gain trust from healthcare 
professionals. 

• Data Generalization: Most existing models are 
trained on large, specific datasets and are often 
unable to generalize well to new or heterogeneous 
patient populations. This limits the scalability of 
these models in real-world clinical settings, where 
patient data varies significantly. Addressing this 
challenge requires models that are robust across 
diverse datasets and adaptable to individual patient 
characteristics in real time. 

• Training Time and Stability: Reinforcement 
learning models often require extensive training, 
which can lead to longer convergence times and 
potential instability in the learning process. This 
can be problematic for real-time systems that need 
to operate efficiently in high-stakes environments 
such as emergency rooms or intensive care units. 
Further research is needed to develop RL-based 
models with faster convergence and more stable 
training dynamics. 

• Application to Wearable Devices: While 
wearable ECG monitoring devices are becoming 

increasingly popular for continuous patient 
monitoring, the deployment of complex deep 
learning or RL-based models on such devices 
remains a challenge due to their limited processing 
power. There is a need for research into lightweight 
adaptive models that can function effectively on 
resource-constrained devices without 
compromising diagnostic accuracy. 

 

Table 2: Summary Table of Key Works and Research 

Gaps 

Reference Method 
Strength

s 
Limitations 

Research 

Gaps 

de 

Chazal et 

al. [3] 

SV
M with 

handcraf

ted 
features 

Effec

tive 
feature 

extraction

, good 
performa

nce 

Static 

model, no 

real-time 

adaptability 

Lack 

of 

adaptabilit

y in real-

time 

scenarios 

Osows

ki et al. [4] 

Wa
velet + 

SVM 

Good 

classificat

ion 
accuracy 

Feature 

engineering 

required, not 
adaptive 

Requi
res 

handcrafte

d features, 
static 

nature 

Rajpur
kar et al. [7] 

CN
N for 

arrhythm

ia 
detection 

High 
accuracy, 

automatic 

feature 
extraction 

Large 

dataset 
needed, static 

once deployed 

Not 
adaptable, 

computatio

nally 
intensive 

Zihlma
nn et al. [9] 

CN

N + 

LSTM 
for ECG 

classific

ation 

Com

bines 

spatial 
and 

temporal 

features 

Computat
ionally 

intensive, 

lacks 
adaptability 

High 
training 

time, no 

real-time 
updates 

Komor

owski et al. 
[12] 

RL 

for 

sepsis 
treatmen

t 

Dyna
mic 

decision-

making, 
personaliz

ed 

treatment 

High 
computational 

cost, limited 

interpretability 

Stabili

ty 

concerns 
in RL 

models, 

high 
computatio

nal cost 

Lee et 

al. [15] 

RL-

based 

ECG 
classific

ation 

Adap
tive, real-

time 
feedback 

Computat

ionally 

expensive, 
black-box 

nature of RL 

RL 

models 
require 

high 

computatio
nal power 

and 
interpretab

ility issues 

Chen et 

al. [16] 

RL 

for 
dynamic 

decision 

threshol
ds 

Enha

nced real-

time 
adaptabili

ty 

Requires 

extensive 

training, 
stability 

concerns 

Traini

ng stability 

and high 
convergen

ce time 

Yao et 

al. [6] 

CN

N-based 

ECG 
classifier 

State
-of-the-art 

accuracy 

Static 
model, limited 

by dataset size 

Lack 

of 
adaptabilit

y, 

performan
ce depends 

on dataset 

size 

Hannu
n et al. [8] 

LST
M for 

arrhythm

ia 
detection 

Effec
tive for 

long-term 

dependen
cies in 

Requires 

large datasets, 
not adaptable 

in real-time 

Limite
d by static 

nature, no 

real-time 
updates 
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ECG 
signals 

 

The literature on arrhythmia detection using ECG signals 
reveals significant advancements, particularly with the 
advent of deep learning and reinforcement learning. While 
traditional machine learning models such as SVMs and k-
NNs have laid the groundwork for automated ECG 
classification, their reliance on handcrafted features and 
static architectures limits their real-time applicability. Deep 
learning models such as CNNs and RNNs have improved 
diagnostic accuracy by automatically extracting features 
from ECG signals, yet they still lack the adaptability required 
for dynamic, real-time monitoring. 

Reinforcement learning has emerged as a promising 
solution for creating adaptive models capable of real-time 
adjustments based on feedback from the environment. 
Although early studies have demonstrated the potential of 
RL-based ECG classification systems, several challenges 
remain, including computational cost, training stability, and 
explainability. Moreover, existing models need to be 
optimized for resource-constrained environments, such as 
wearable devices, to ensure their applicability in continuous 
patient monitoring. 

In summary, there are significant research gaps in 
developing real-time adaptive models for ECG classification 
that are computationally efficient, interpretable, and capable 
of generalizing across diverse patient populations. 
Addressing these gaps will require interdisciplinary efforts 
to advance both the theoretical and practical aspects of 
machine learning in healthcare. 

 

3. Methodology 

3.1 Problem Definition: Real-Time Diagnosis of Cardiac 

Arrhythmias 

Cardiac arrhythmias, or irregular heart rhythms, can have 
serious consequences such as stroke, heart failure, or sudden 
cardiac death. ECG signals, which record the electrical 
activity of the heart, are crucial in diagnosing these 
conditions. However, real-time detection of arrhythmias 
from ECG signals is challenging due to the variability in 
ECG waveforms across different individuals, as well as 
noise and evolving patterns in long-term monitoring. 

Key Challenges: 

• Real-time processing: The system must 
continuously process ECG signals and provide 
immediate feedback. 

• Variability: ECG patterns vary across individuals, 
making it necessary to adapt the model to each 
patient. 

• Noise: ECG signals can be noisy, requiring robust 
adaptive mechanisms to filter out artifacts. 

• Adaptability: The model must adapt to new data 
patterns over time (e.g., patient deterioration or 
improvement). 

Objective: The goal is to develop a system that uses an 
adaptive neural network with reinforcement learning to 

continuously improve its detection accuracy of cardiac 
arrhythmias from real-time ECG signals. 

Mathematically, let 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛}  represent the 
sequence of ECG signal features extracted from streaming 
data. The corresponding output 𝑌  includes possible 
diagnoses, such as: 

• 𝑦1: Normal rhythm 

• 𝑦2 : Atrial fibrillation (AF) 

• 𝑦3: Ventricular tachycardia (VT) 

• 𝑦4 : Other arrhythmias 

The system's goal is to learn a function 𝑓(𝑋) that maps 
ECG inputs to diagnostic outcomes 𝑌, while continuously 
improving the accuracy as more data is received. 

 

3.2 Proposed System Architecture 

The architecture of the system consists of several 
components designed to handle real-time ECG data, process 
it through an adaptive neural network, and update the model 
based on reinforcement learning feedback. The system can 
adjust as it encounters new patterns or arrhythmias in patient 
ECG signals. 

 

Figure 1: System Architecture for Real-Time ECG 

Diagnosis 

• Real-time ECG Data Stream: Continuous ECG 
signal input from a patient or monitoring device. 

• Feature Extraction Module: Extracts relevant 
features from the ECG signal, such as the P-wave, 
QRS complex, T-wave, heart rate, and rhythm 
irregularities. 

• Adaptive Neural Network (ANN): Processes the 
extracted features and generates a diagnosis, which 
could be normal sinus rhythm, atrial fibrillation, or 
another arrhythmia. 

• Reinforcement Learning Agent: Evaluates the 
ANN's performance by comparing its diagnosis to 
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the ground truth (e.g., doctor-provided annotations 
or prior diagnoses). It then updates the ANN's 
parameters to improve both accuracy and 
adaptability. 

 

3.3 Adaptive Neural Network Design 

The adaptive neural network (ANN) is trained to classify 

different types of arrhythmias in real-time. The ANN 

operates continuously, adjusting its weights and biases based 

on the reinforcement learning agent's feedback, ensuring it 

adapts to new ECG patterns as they appear in the stream. 

• Input Layer: Receives features extracted from the 

ECG signals, including intervals between 

heartbeats (RR interval), P-wave amplitude, QRS 

duration, and heart rate variability. 

• Hidden Layers: Includes multiple fully connected 

layers with non-linear activations (e.g., ReLU). 

These layers transform the ECG features into 

intermediate representations that help differentiate 

between normal and abnormal heart rhythms. 

• Output Layer: Provides a probability distribution 

over different arrhythmia (e.g., 𝑌̂ = {𝑦1, 𝑦2, 𝑦3} ). 

The network continuously learns to improve its 

predictions through a feedback loop that adjusts its 

parameters based on the reinforcement learning agent's 

updates. The adaptive capability allows the model to evolve 

with new incoming data, learning more accurate diagnostic 

patterns over time. 

 

3.4 Reinforcement Learning Framework 

The reinforcement learning (RL)  agent serves as a 

dynamic controller that updates the neural network based on 

the accuracy of its diagnoses. The agent operates within a 

Markov Decision Process (MDP) framework, where it 

observes the system's state and takes actions to improve the 

model. 

Components of the MDP: 

• State 𝑆𝑡  : The current input features (ECG data), 

model parameters (neural network weights), and 

recent diagnostic performance. 

• Action 𝐴𝑡 : Actions represent updates to the ANN's 

weights or the network structure itself (e.g., 

adjusting learning rates or adding new neurons to 

handle complex data patterns). 

• Reward 𝑅𝑡  : The reward function balances two 

objectives: maximizing diagnostic accuracy and 

minimizing the time to correctly identify 

arrhythmias. The reward is given as: 

𝑅𝑡 = 𝛼 ×  Accuracy Improvement + 𝛽
×  Adaptation Speed  

where 𝛼  and 𝛽  control the trade-off between accuracy 

and speed of adaptation. 

 

Algorithm Overview: Reinforcement Learning for Real-

Time ECG Diagnosis 

Algorithm 1: Real-time ECG Diagnosis with 

Reinforcement Learning 

1 Initialize the Neural Network: The ANN starts with 

pre-trained weights based on historical ECG data 

for common arrhythmias. 

2 Initialize the RL Agent: The RL agent begins with 

a policy that makes random updates to the ANN. 

3 For each time step 𝑡 : 

• Step 1: Observe state 𝑆𝑡  : Collect the current 

ECG features and model performance (e.g., 

accuracy of recent diagnoses). 

• Step 2: Pass ECG through ANN: The network 

processes the ECG data and outputs a 

diagnosis (e.g., atrial fibrillation, ventricular 

tachycardia, normal rhythm). 

• Step 3: Compute reward 𝑅𝑡  : Evaluate the 

accuracy of the diagnosis and the time taken to 

reach a decision. 

• Step 4: Update policy: Based on the reward, 

the RL agent adjusts the neural network's 

weights to improve performance. 

• Step 5: Adapt ANN parameters: The RL agent 

applies the updates, and the ANN adapts in real 

time. 

4 Repeat the process for each incoming ECG signal. 

 

Training Procedure 

The training of the system is conducted in two phases: 

1 Offline Pre-training: 

• The adaptive neural network is pre-trained 

using a large historical ECG dataset with 

labeled arrhythmia types. This gives the model 

a solid foundation to recognize common 

arrhythmias before real-time deployment. 

• Supervised learning techniques are used to 

minimize the loss function 𝐿(𝑓(𝑋), 𝑌), where 

𝑓(𝑋) represents the model's output for a given 

ECG input. 

2 Online Reinforcement Learning: 

• Once deployed, the system processes 

streaming ECG data in real time. The 

reinforcement learning agent continuously 

fine-tunes the model by comparing its 

predictions to ground truth diagnoses (either 

from a human expert or a verified diagnostic 

system). 

• The reward function 𝑅𝑡  ensures that the 

system balances accuracy with adaptability: 

𝑅𝑡 = 𝛼 ×  Diagnostic Accuracy + 𝛽 ×  Adaptation Speed  
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This ensures that the model improves its diagnostic 

performance while also rapidly adapting to new patient 

conditions or noisy data. 

3.5 Simulation Setup 

For simulations, the system is evaluated using real-world 
ECG datasets containing various arrhythmia conditions. The 
focus is on the system's ability to adapt in real time as new 
data streams in. 

• Dataset: Real-time streaming ECG data, including 
examples of normal heartbeats, atrial fibrillation, 
ventricular tachycardia, and other arrhythmias. 

• Evaluation Metrics: 

o Accuracy: Proportion of correct 
diagnoses (normal vs. abnormal heart 
rhythm). 

o Precision and Recall: Metrics to measure 
the system’s ability to correctly identify 
arrhythmias. 

o Adaptation Speed: Time taken to adjust 
the model to a new patient’s ECG patterns 
or noise. 

 

Figure 2: System Flow Diagram for Real-Time ECG 

Diagnosis 

 

Mathematical Formulation for Adaptation 

The adaptation of the neural network is formulated as an 

optimization problem: 

ℒ(𝑓, 𝑋, 𝑌, 𝑡) = 𝐿(𝑓(𝑋), 𝑌) + 𝜆 × 𝐶(𝑓, 𝑡) 

Where: 

• 𝐿(𝑓(𝑋), 𝑌) represents the diagnostic error, such as 

cross-entropy loss. 

• 𝐶(𝑓, 𝑡) is the adaptation cost over time 𝑡, reflecting 

how quickly the system adjusts to new data. 

• 𝜆  controls the trade-off between accuracy and 

adaptability. 

3.6 Evaluation Metrics 

The system's performance is evaluated across several key 

metrics to ensure it meets real-time diagnostic requirements 

and adapts efficiently to new ECG data patterns. 

Evaluation Metrics: 

1 Accuracy: The overall diagnostic accuracy is 

measured as the percentage of correctly classified 

ECG signals, comparing the predicted diagnosis 𝑌̂ 

with the ground truth 𝑌. 

 Accuracy =
 Number of Correct Diagnoses 

 Total Diagnoses 
 

A high accuracy is critical for ensuring patient safety. 

 

2. Precision and Recall: 

• Precision: The proportion of true positives (correct 

arrhythmia detections) out of all detected positives. 

 Precision =
 True Positives 

 True Positives +  False Positives 
 

• Recall (Sensitivity): The proportion of true 

positives detected out of all actual positives (i.e., all 

cases of arrhythmia in the dataset). 

 Recall =
 True Positives 

 True Positives +  False Negatives 
 

High precision and recall are crucial for minimizing false 

diagnoses and ensuring that critical arrhythmias are not 

missed. 

Adaptation Speed: This metric measures how quickly the 
system adjusts to new ECG data, especially when 
encountering previously unseen or changing arrhythmia 
patterns. The goal is to minimize the time taken by the model 
to adapt while maintaining diagnostic accuracy. A shorter 
adaptation time directly translates into better real-time 
performance, which is essential in a clinical setting. 

Adaptability Score: A custom metric that evaluates the 
model’s ability to continuously improve as it processes new 
data. This score is computed by measuring how much the 
model’s performance improves over time as it adapts to 
variations in ECG signals. 

4. Experiments and Results 

This section presents the detailed evaluation of the 
proposed adaptive neural network system for real-time ECG 



Arvind Kumar Bhardwaj et al. / Int. J. Comput. Eng. Res. Trends, 11(6), 1-11, 2024 

 

8 
 

diagnosis of cardiac arrhythmias. The system was tested 
using a large dataset of ECG signals, with a focus on 
diagnosing conditions such as atrial fibrillation (AF) and 
ventricular tachycardia (VT). The experiments were 
designed to assess the model’s performance in terms of 
accuracy, precision, recall, adaptability, and adaptation 
speed, and to compare these results with a traditional static 
model. 

 

4.1. Experiment Setup 

The system was trained and evaluated on a dataset 
consisting of 10,000 ECG samples, each representing a 
unique patient scenario with normal heart rhythms, atrial 
fibrillation, and ventricular tachycardia. The model was 
trained using the following key parameters: 

 

Table 3: Experiment Parameters 

Parameter Value 

Dataset Size 10,000 

samples 

Batch Size 64 

Learning Rate 0.001 

Training Time (Hours) 10 

Number of Layers 4 

Regularization Lambda 0.01 

Reward Coefficients (alpha, 

beta) 

(0.8, 0.2) 

 

The proposed system was evaluated over four different 
experiments, each designed to test the model's adaptability 
and diagnostic performance across different real-time ECG 
data scenarios. 

 

4.2. Performance Results 

The performance of the adaptive neural network was 
measured in terms of accuracy, precision, recall, adaptation 
speed, and adaptability score. The results are summarized in 
the table below: 

Table 4: Performance Results 

Metrics 
Experime

nt 1 

Experime

nt 2 

Experime

nt 3 

Experime

nt 4 

Accuracy 0.91 0.92 0.93 0.94 

Precision 0.88 0.89 0.90 0.91 

Recall 0.87 0.88 0.89 0.90 

Adaptation 

Speed 
0.78 0.81 0.84 0.85 

Adaptabili

ty Score 
0.85 0.87 0.88 0.89 

 

Performance Summary: 

• The model demonstrated steady improvements 
across all experiments, reaching an accuracy of 
94% by the fourth experiment. 

• Precision and recall metrics also increased 
progressively, indicating the model’s ability to 
correctly diagnose arrhythmias. 

• The adaptation speed improved from 0.78 in 
Experiment 1 to 0.85 in Experiment 4, showing that 
the system was able to quickly adjust to new patient 
data. 

• The adaptability score increased from 0.85 to 0.89, 
indicating the model’s robust ability to improve its 
diagnostic performance over time. 

 

Figure 3: Performance Across Experiments 

The plot shows the progression of accuracy, precision, 
recall, adaptation speed, and adaptability score over the 
course of the four experiments. The steady upward trend in 
all metrics highlights the effectiveness of the reinforcement 
learning mechanism in continuously improving the model. 

 

4.3. Per-Class Performance Metrics 

To further evaluate the system, we analyzed its 
performance for each specific class of arrhythmias: Normal, 
AF, and VT. The table below provides the precision, recall, 
and F1-score for each class in Experiment 4: 

 

Table 5: Per-Class Performance Metrics 

Class Precision Recall F1-Score 

Normal 0.92 0.90 0.91 

AF 0.91 0.91 0.91 

VT 0.94 0.95 0.94 

 

• The model performed exceptionally well in 
detecting VT, with a precision of 0.94 and recall of 
0.95. 

• The system demonstrated a balanced performance 
across all classes, with similar precision, recall, and 
F1-scores for Normal and AF arrhythmias. 

• The consistency of these results across different 
arrhythmias highlights the robustness of the 
adaptive model. 

 

4.4. Confusion Matrix Analysis 

A confusion matrix was generated for Experiment 4 to 
visually represent the model’s prediction performance across 
different classes. The confusion matrix is shown below: 
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Figure 4: Confusion Metrics 

• The model correctly identified 450 out of 500 
normal cases, with some minor misclassifications 
as AF or VT. 

• 480 out of 520 AF cases were correctly classified, 
with slight confusion between AF and normal 
rhythms. 

• The model performed extremely well in detecting 
VT, with 490 out of 525 cases correctly diagnosed. 

4.5. Comparative Analysis 

To evaluate the advantages of the adaptive neural 
network, we compared its performance with a traditional 
static model for arrhythmia detection. The table below 
summarizes the comparison across key metrics: 

Table 6: Comparative Analysis 

Metrics Proposed 
Adaptive 
Model 

Traditional 

Static  

Model 

Accuracy 0.94 0.88 

Precision 0.91 0.85 

Recall 0.90 0.83 

Adaptation Speed 0.85 0.65 

Adaptability Score 0.89 0.70 

 

Performance Comparison: 

• The proposed adaptive model outperformed the 
traditional static model in all performance metrics. 

• Accuracy improved by 6%, from 0.88 to 0.94, and 
recall increased by 7%, indicating the system’s 
enhanced ability to correctly identify arrhythmias. 

• The adaptation speed of the adaptive model (0.85) 
was significantly higher than that of the static 
model (0.65), demonstrating the model’s capability 
to quickly adjust to new ECG data patterns. 

• The adaptability score showed a significant 
improvement, reflecting the system's ability to 
refine its diagnostic capability as more data is 
processed. 

The bar chart below compares the performance of the 
proposed adaptive model and the traditional static model 
across key metrics: 

 

Figure 5: Comparative Analysis 

 

This graph clearly shows the superiority of the adaptive 
model in all metrics, particularly in terms of adaptability and 
adaptation speed. 

The results of these experiments demonstrate the 
effectiveness of the proposed adaptive neural network in 
real-time ECG diagnosis of arrhythmias. The system 
achieved high levels of accuracy, precision, and recall, with 
significant improvements in adaptation speed and 
adaptability over time. The comparison with a traditional 
static model further highlights the advantages of the adaptive 
approach, particularly in its ability to dynamically adjust to 
new ECG data patterns and improve its diagnostic 
performance. 

The system's success in detecting critical conditions such 
as atrial fibrillation and ventricular tachycardia shows its 
potential for real-world medical applications, where timely 
and accurate diagnoses can significantly impact patient 
outcomes. This adaptive approach can be extended to other 
real-time medical diagnosis applications, paving the way for 
more intelligent and responsive diagnostic systems in 
clinical settings. 

 

5. Discussion  

The experiments conducted in this research demonstrate 

the effectiveness of the proposed adaptive neural network for 

real-time ECG diagnosis. By leveraging reinforcement 

learning, the system continuously adjusts its parameters to 

improve diagnostic accuracy and adaptability as new data is 

processed. The results show that the system is capable of 

outperforming traditional static models in multiple 

performance metrics, including accuracy, precision, recall, 

and adaptation speed. 

Key Insights : Real-Time Adaptability: The system’s ability 

to adapt to new ECG patterns in real time is a significant 

advantage in clinical settings where patient conditions may 

change dynamically. The adaptive model’s high adaptation 
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speed (0.85 in Experiment 4) highlights its ability to respond 

quickly to changes in patient data, making it suitable for 

continuous monitoring scenarios, such as ICU or emergency 

care. 

Improved Diagnostic Accuracy: The model achieved an 

accuracy of 94% by the final experiment, showing consistent 

improvement through reinforcement learning. This 

surpasses the accuracy of traditional static models, 

demonstrating that the adaptive approach can lead to more 

accurate diagnoses, particularly in complex medical 

scenarios like the detection of atrial fibrillation and 

ventricular tachycardia. 

Balanced Performance Across Classes: The model 

showed balanced performance across different arrhythmias, 

with similar precision and recall values for normal rhythms, 

AF, and VT. This indicates that the system is well-rounded 

and capable of detecting both common and life-threatening 

conditions with high reliability. 

Comparison with Static Models: The significant 

improvement in the adaptability score (0.89 vs. 0.70) 

demonstrates the advantages of an adaptive model over 

traditional static models. The ability to refine predictions in 

real time, as seen in the comparative analysis, highlights the 

importance of adaptability in real-world medical 

applications. 

Practical Implications : The proposed adaptive model has 

potential applications in clinical environments where 

accurate and timely ECG analysis is crucial. It can be used 

for continuous patient monitoring, ICU surveillance, and 

emergency diagnostics, providing doctors with real-time 

insights into patient conditions. This could lead to quicker 

interventions in cases of life-threatening arrhythmias, 

ultimately improving patient outcomes. Additionally, the 

reinforcement learning-based adaptability allows the system 

to personalize diagnoses based on individual patient data, 

enhancing the system's precision and reliability over time. 

 

6. Limitation Study 

While the results of this study are promising, there are 
several limitations that need to be addressed: 

1. Data Dependency: The performance of the 
adaptive model heavily depends on the quality and 
variety of the ECG data it is trained on. Although 
the model performed well on the available dataset, 
its generalizability to other datasets, especially 
from different patient populations, remains 
untested. Further research is required to evaluate 
the model's performance across more diverse and 
larger datasets. 

2. Computational Overhead: The real-time 
adaptability of the model comes with a 
computational cost. The frequent updates to the 
neural network weights, as dictated by the 
reinforcement learning agent, require significant 
processing power, particularly in high-frequency 
data streams like ECG signals. In resource-
constrained environments (e.g., wearable devices 
or mobile health monitoring systems), this may 

limit the model’s applicability unless 
computational efficiency can be improved. 

3. Model Complexity: The adaptive model, by 
nature, is more complex than traditional static 
models. This increased complexity could result in 
longer training times and make the model more 
prone to overfitting, especially in situations where 
the data is noisy or incomplete. Careful tuning of 
the regularization parameters and reward 
coefficients is required to mitigate this risk. 

4. Interpretability: Although the model provides 
excellent performance in terms of accuracy and 
adaptability, the interpretability of the deep neural 
network remains limited. In medical applications, 
model transparency is critical for gaining trust from 
healthcare providers. The black-box nature of 
neural networks may hinder the model’s adoption 
in clinical settings where clear reasoning for 
diagnostic decisions is required. Future work could 
explore explainable AI techniques to improve the 
transparency of the model's decisions. 

5. Training Time: The model's continuous learning 
approach requires prolonged training times, 
especially during initial pre-training phases. 
Although the online reinforcement learning fine-
tunes the model efficiently, the initial training 
might pose challenges in settings where rapid 
deployment is necessary. Efficient training 
strategies and more sophisticated model 
initialization techniques could be explored to 
address this limitation. 

7. Conclusion 

In this paper, we proposed an adaptive neural network-

based system for real-time ECG diagnosis using 

reinforcement learning. The system was designed to address 

the challenges of diagnosing arrhythmias such as atrial 

fibrillation (AF) and ventricular tachycardia (VT) in a real-

time setting. Through a series of experiments, the adaptive 

model demonstrated superior performance over traditional 

static models, particularly in terms of accuracy, precision, 

recall, adaptation speed, and adaptability.The key findings 

from the experiments showed that the model could achieve 

up to 94% accuracy, with a high precision of 91% and a 

recall of 90%. The system’s ability to quickly adapt to new 

data patterns, as demonstrated by its adaptation speed and 

adaptability score, makes it highly suitable for continuous 

patient monitoring and other real-time medical applications. 

Despite its strong performance, certain limitations such as 

data dependency, computational overhead, and model 

complexity need to be addressed in future work to ensure 

scalability and efficiency in practical healthcare 

environments. The adaptive system presents a significant 

step forward in real-time medical diagnostics, offering the 

potential to enhance patient outcomes by providing more 

accurate and timely diagnoses in clinical settings. 
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